
Semidefinite Embedding

Applied to Visualizing Folksonomies

CS6772 Project Proposal

Blake Shaw <bs2018@columbia.edu>

December 13th, 2005

1 Abstract

This paper investigates using Semidefinite Embed-
ding (SDE) to visualize data collected from a folk-
sonomy. The del.icio.us social bookmarking service
is a perfect example of a folksonomy; a community of
users label websites with descriptive tags. Each tag
exists in a high-dimensional space corresponding to
the frequency of use of that tag among all the users of
the system. We are motivated by the following ques-
tion: can we find a simple low-dimensional structure
for these tags that captures the significant relation-
ships inherent in the data? In this paper we explore
Semidefinite Embedding, an algorithm for non-linear
dimensionality reduction, and its application to visu-
alizing folksonomic systems, focusing on the effects of
specifying different levels of connectivity for the data
and the heuristics which can be used to find the best
parameters for the algorithm.

2 Introduction

2.1 Semidefinite Embedding

Semidefinite Embedding (also known as Maximum
Variance Unfolding) is an algorithm for nonlinear di-
mensionality reduction. Given a Gram matrix con-
sisting of the distances between N points, SDE finds
a low-dimensional manifold that best approximates
the high-dimensional space in which the data exists.

2.1.1 Steps of SDE

Given a Gram matrix Gi,j for i = {1, 2, ...N} and
j = {1, 2, ...N} such that G ≥ 0

• Calculate a connectivity matrix C such that the
Ci,j = 1 for points that are close to each other in

G. This connectivity matrix specifies a neighbor-
hood graph for the N points and is often created
by connecting each point to its k-nearest neigh-
bors.

• Formulate the problem to be solved as a semidefi-
nite programming problem to find the Gram ma-
trix K with the maximum variance that satisfies
the constraints specified by the connectivity ma-
trix and a centering constraint. The constraints
from the connectivity matrix act to preserve lo-
cal distances as best as possible.

Maximize Tr(K) subject to K ≥ 0,

Σi,jKi,j = 0
and ∀{i, j} such that Ci,j = 1

Kii + Kjj −Kij −Kji = Gii + Gjj −Gij −Gji

• After K is found by the semidefinite program-
ming package, calculate the low-dimensional co-
ordinates through spectral embedding. By per-
forming an eigenvalue decomposition on K, we
can find the d eigenvectors which correspond to
the highest eigenvalues and use these as the low-
dimensional coordinates.

2.2 Del.icio.us Data

I propose using SDE to visualize the relationships
between tags used to describe websites. Del.icio.us is
a web-based social bookmarking system. Each user
adds bookmarks and then labels them with tags. For
example, a user might bookmark apple.com and tag
it with computer, tech, design. Del.icio.us is a per-
fect example of a folksonomy (see figure 1). Users
tag small parts of the web, and then when all of
these tags are aggregated, a large comprehensive set
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Figure 1: Structure of Del.icio.us. Users tag objects (in
this case links) with a vocabulary of tags. [1]

of metadata is produced in the form of tags. How-
ever, because these tags are now contributed from
many different individuals and aggregated, useful in-
formation comes not only from the tag itself but also
from the information about who contributed to label-
ing the content with that tag. This information about
how users apply tags can be analyzed to calculate the
similarity between tags.

2.2.1 Details

Since del.icio.us is an open system, allowing anyone
to view other users’ bookmarks, I was able to collect a
dataset which consists of 200 tags and their frequency
of use by 1494 users. This data can be thought of as
N points existing in D dimensions, where N is the
number of tags, and each dimension represents a user.
We can then calculate the distance between each of
these N points using a distance metric such as Eu-
clidean distance, KL-divergence, or an RBF kernel.
For this paper I focus mainly on using KL-divergence
although I experimented with other metrics as well.
By applying the KL-divergence metric to each pair of

tags represented as probability distributions p and q,
we are able to calculate the initial Gram matrix G.

KL(p, q) =
∑

x

p(x) ∗ log
p(x)
q(x)

+ q(x) ∗ log
q(x)
p(x)

3 Initial Results

Figure 4 shows 100 tags visualized in two dimensions.
Distances are calculated using KL-divergence, and
the connectivity scheme is 2 nearest neighbors on top
of the minimum spanning tree. Details about how
these parameters are chosen are presented in a later
section. The size of each tag is proportional to its
overall frequency of use and is related to a measure
of generality as well. From examining this map of
tags, we see many features that make sense (see figure
5). Related topics such as apple, mac, osx, and ipod
appear close together. Furthermore, we can see re-
gions emerge which correspond to general topics such
as web-design, academic topics, and software. The
pie chart of eigenvalues shows that this embedding
captures 76% of the variance of the data. The con-
nectivity matrix is sorted by general tag popularity
and shows the existence of “hubs.” These nodes are
highly connected, representing tags that are related
to many other tags. This feature is consistent with
our expectation that a folksonomic system would act
like a scale-free network.

4 Specifying the Connectivity
Matrix

An important step in the algorithm is specifying the
initial connectivity matrix C. As seen in figure 6,
picking a level of connectivity that is too low results
in a map lacking sufficient information about the
relationships between tags, and picking a level of
connectivity that is too high results in a map where
the significant relationships are not dominant. In
order to understand how to find the best level of
connectivity for embedding this data, I experimented
with a variety of different schemes for growing
the connectivity matrix, expanding on the typical
k-nearest neighbors approach, and investigated
heuristics I could use to quantify the strength of the
embedding.
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4.1 Methods for Creating the Connec-
tivity Matrix

• k-nearest neighbors – The standard method.
It is easy to implement and works very well.
However, for small values of k, it needs to be
supplemented with a minimal spanning tree in
order to ensure a connected graph.

• k-nearest incremental – This method is like k-
nearest; however, it adds the links incrementally,
allowing for more detailed plots.

• Other methods – I also experimented with
other techniques such as simply adding the best
links first, or varying how many links each node
gets based on its popularity, as well as simply
randomly adding links. These methods produced
maps which did not appear to have clear advan-
tages over a k-nearest neighbor approach, and
they were not investigated in depth due to the
difficulties of quantitatively comparing these dif-
ferent schemes.

4.2 Heuristics for Picking the Level of
Connectivity

I explore how 3 different metrics can be used to eval-
uate the strength of an embedding. Figure 2 shows
these values for N=50 and a range of k-values using
k-nearest neighbors as the connectivity scheme.

• Eigen-gap – The gap between the eigenvalue
corresponding to the last eigenvector used in the
embedding and the eigenvalue corresponding to
the first eigenvector to be discarded.

• Eigen-sum – The sum of the eigenvalues corre-
sponding to the eigenvectors used in the embed-
ding.

• Objective function – Tr(K), the sum of the
pairwise distances in K.

4.3 The Eigen-gap

The size of the eigen-gap is a well-known metric for
evaluating how well high-dimensional data can be em-
bedded in a lower dimensional space. As we see in
figure 2, the eigengap has a maximum at 128 links,
which corresponds to a k-value of 3. From a subjec-
tive point of view, this value of k does seem to corre-
spond visually to the best embedding. Furthermore

it is reassuring that this k-value provides an embed-
ding which captures 78% of the variance of the data,
as shown by the eigen-sum.

4.4 Weighting the Objective Function

At first glance, the objective function appears not to
provide any help in picking the best k-value. As the
number of links increases, the objective function falls
asymptotically, approaching a minimum value. If we
are trying to find the best embedding, corresponding
to reducing the variance of K as much as possible, we
can always add another link to get it a little lower, un-
til we are finally specifying a full connectivity matrix.

However, it is wrong to increase k arbitrarily;
k is directly related to how much long distances can
be trusted, and therefore is related to how much
non-linearity the algorithm can sufficiently capture.
For k = 1, the algorithm trusts only very local
distances. As k → N , the algorithm trusts larger
and larger distances, until finally the algorithm
is reduced to simply linear spectral embedding,
disregarding non-linearities.

I experimented with constructing a cost func-
tion by weighting the objective function by the
percentage of links m used to generate constraints
for the SDP problem. The intuition here is that
adding each new link should reduce the objective
function by 1/m. As m → 1, each new link should
correspond to less of a change to the objective
function. By finding the minimum of this cost
function, we should be able to find the k-value that
corresponds to the proper balance among the value
of the objective function, the complexity added,
and the reduction of non-linearity that comes from
specifying more links.

Figure 3 shows the cost function (subplot 2),
and compares it to the eigen-gap (subplot 3). We see
that the cost function also identifies the best k-value
to be at k = 3. Figure 7 offers an explanation of the
3 distinct regions of the cost function for a simpler
dataset consisting of numbers arranged on a grid
to better illustrate what is going on. We see that
in region 1, the algorithm is incrementally building
a consistent model; each additional link drastically
reduces the objective-function as the nodes congeal
into a somewhat stable state. Region 2 is a stable
state where the penalty for adding another link is
proportional to the objective function. In region 3,
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Figure 2: The eigen-gap, eigen-sum, and objective function for k ranging from 0 - 12 (using a minimum spanning
tree initialization) for N = 50 tags. The level of connectivity is specified along the x-axis in terms of number of links.

adding another link does not affect the objective
function as much as it affects the penalty for adding
another link.

It is interesting that the minimum of the cost
function corresponds to the maximum eigen-gap,
since the cost function is evaluated before the spec-
tral embedding and does not incorporate information
about the dimension of the final embedding. Also,
it is beneficial to avoid doing a time-intensive eigen-
value decomposition when trying to find optimal
parameters. Although this cost function is not suf-
ficiently mathematically grounded, it is interesting
that it validates existing heuristics for choosing
a connectivity level for a variety of datasets. Its
validity needs to be explored further and is discussed
more in the next section.

5 Future Directions

I am interested in 3 different future directions:

• The cost function Tr(K) ∗ m is presented intu-
itively as a way to balance the objective func-
tion and the number of links used in the con-
nectivity matrix. Its relation to the eigen-gap
is promising; however, this function needs a
stronger mathematical grounding to be proven

an effective heuristic for determining the best
connectivity level.

• It is important to be able to compare differ-
ent connectivity schemes and distance metrics.
However, to quantitatively compare the effects
of these techniques we need an objective measure
of the strength of an embedding that is indepen-
dent of these parameters.

• The problem of how to best grow a connectiv-
ity matrix given a Gram matrix is an interesting
problem in its own right. It could be benefi-
cial to experiment with algorithms for producing
C that are independent of the embedding step,
treating the selection of neighbors as a prepro-
cessing step. For example, one could start with a
full connectivity matrix and prune links that are
either not necessary or can be proven to distort
measurable quantities in the resulting graph.

6 Conclusion

From analyzing the results of using Semidefinite Em-
bedding to visualize folksonomic data, we see that
it is indeed possible to reduce the dimensionality of
the data, provided we specify an appropriate level
of connectivity. The resulting maps of tags preserve
important relationships in the data and offer insight
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Figure 3: The top plot shows the original statistics from figure 2; however, in this plot the links are added incre-
mentally to provide a finer level of detail. The middle plot shows the cost function Tr(K) ∗ m. The bottom plot
shows the eigen-gap. It is interesting that the the minimum of the cost function corresponds to the maximum of the
eigen-gap.

into how these tags are related. Furthermore, we see
the effects of specifying different levels of connectiv-
ity and offer two techniques, one well-tested, and one
experimental, for choosing the appropriate level.
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Figure 4: Map of 100 tags. K=2 + min span tree. Using KL-Divergence. Sizes represent popularity, and are also
related to a measure of generality.
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Figure 5: Map of 100 tags. k = 2 + min span tree. Features that make sense. General regions emerge and specific
items are typically related to their neighbors.
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Figure 6: Eigenvalues, maps, and connectivity matrices for a range of k values.

8



Figure 7: Three distinct regions of the cost function. Region 1 corresponds to a period of assembling the basic
structure. Region 2 is the optimal state, corresponding to the minimum of the cost function, and region 3 consists of
adding more links which do not significantly change the basic structure.
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