
Machine Learning Final Project:

Locally Linear Embedding for Visualizing

High-Dimensional Data

Blake Shaw <bs2018@columbia.edu>

May 6th, 2004

1 Introduction

In many fields ranging from Genomics, to Sociol-
ogy we are presented with large amounts of high-
dimensional data. With the advent of being able to
collect this wealth of information, a common question
has emerged: How can we extract meaningful visual
information from large high-dimensional data sets?
Ideally, we want to represent significant relationships
between N items in a D dimensional space using only
2 dimensions, allowing the data to be plotted, and
easily visualized. In this paper, I show the results of
using Locally Linear Embedding (LLE) to visualize
information about the musical listening habits of the
Columbia community.

1.1 Data

The data used for this project is a D x N table, where
D is 2000 musical artists, and N is 68 musical listen-
ers. Each entry of the table represents how many
times a user has listened to a certain artist. This
data was aggregated by the CUtunes project.

1.2 Goals for Analysis

Ideally we would like to visualize this data in two
ways:

i. Plotting maps of users
Distances between users represents musical

compatibility between the two users, and clusters in
the map represent groups of people with very similar
musical tastes

ii. Plotting maps of artists
Distances between artists represents some idea

of how similar two artists are, and clusters in this
case should correspond to some idea of “genre.”

2 Implementation

See the Code (attached) for full implementation de-
tails.

2.1 A Brief Description of the Algo-
rithm

LLE is comprised of 3 steps. First we compute the
distance from each point to it’s K nearest neighbors.
We then create a matrix of reconstruction weights W
minimizing the cost specified by this distance matrix.
We can then use W to reduce the problem of find-
ing a low dimensional embedding to a sparse eigen-
value problem. Note: The only free parameter in
this algorithm (assuming we are embedding into a 2-
dimensional space) is the value of K. Please see the
Results section for more about picking the best K.

2.2 Estimating Distances

I have experimented with two different ways of com-
paring multi-dimensional probability distributions
(representing either artists, or users), in order to
create a NxN distance matrix where each entry
represents the distance between two items in D
dimensions. P is the probability distribution of the
first item and Q is the distribution of the second.

i. Euclidean Distance

distance(P,Q) =

√√√√ D∑
i=0

(Pi −Qi)2 (1)

1

ii. Kullback-Leibler divergence

distance(P,Q) =
D∑

i=0

Pi log
Pi

Qi
(2)

3 Results

3.1 Discussion of Initial Trials

For my initial trials with LLE, I picked values for K
which produced maps which made the most sense in
terms of my own intuition about the data. Figures
1-4 (Attached) show maps for artists and users, us-
ing euclidean and KL divergence metrics. Lines are
drawn between the 5 nearest neighbors for each item.

3.1.1 Artist Maps

Assessing the quality of these maps is a very subjec-
tive task. However upon inspecting the artist plots
(see attached figure 5), we see a variety of features
which make sense. For instance there is a close prox-
imity of ”The Shins” to ”Shins, The”. It is a good
sign that an artist with two entries in the data still
occupies the same general region of the space. Fur-
thermore, certain areas appear to be populated with
artists of a specific type or ”genre” of music. Al-
though many data points appear to not be correctly
placed into a specific type, this ”noise” could sim-
ply be attributed to a lack of sufficient data for those
points. Upon a first examination of this problem, I
believe that there simply isn’t enough data to prop-
erly relate two artists to each other. Out of the 100
most popular artists shown on these maps, only ap-
proximately 20 percent have significant contributions
by more then 10 users. It should be expected that
many more dimensions are needed to properly define
similarity between musical artists.

3.1.2 User Maps

It is easier to gauge the quality of these maps then
the artist maps, because one can simply look at
two users CUtunes data to see if they are in fact
listening to many of the same artists. Furthermore,
in this case the data is more sufficient (68 points in
2000 dimensions). Although the bottom section of
the data is pretty sparse, it still contains valuable
information for comparing two users. In general this

map seems to make sense given the dataset.

An interesting feature to note is that by exam-
ining the connections drawn between the K nearest
neighbors, we find distinct hubs. In most social
networks (scale-free), the degree of connectivity
typically obeys a power-law distribution. It makes
sense that we would see a large, highly connected
component, with groups of individuals scattered to
the periphery based on terms which make them and
their neighbors different from the masses.

Furthermore, it is interesting to compare how
these two different distance metrics represent these
hubs. It is not completely clear from figures 2 and
4. However, looking over a larger range of K, it
appears that the KL Divergence metric groups highly
connected items closer together then the euclidean
metric; this fact probably comes from the relation of
KL Divergence to entropy.

3.2 Picking an Appropriate K Value

The task of picking a value for K which provides the
best embedding is still a very open problem. One pro-
posed method is to look at which values of K provide
the clearest distinction between the eigenvalues used
for the embedding and the eigenvalues excluded. If
there is a large gap, it means LLE is not as sensitive
as when there is a small gap. This method is tied to
matrix stability issues. To roughly approximate the
size of the eigen-gap, I chose to simply plot the dif-
ference between the d+1 lowest eigenvalue (used in
the embedding), and the one directly next to it (not
used). Figure 6 (attached) shows these results. Gen-
erally for K greater than 10, there is little change in
the maps produced. It was good to see that my hunch
of picking between 8-12 was correct; there does exist
a high maximum there. However this method finds
K = 20 to be optimal. Despite this fact, I believe,
based on intuition, that a smaller value of K is more
accurate.

4 Conclusion and Future Direc-
tions

There are two directions in which I would take this
project provided with more time. My primary con-
cern with the results is that I believe there was in-
sufficient data. Some points seem like noise. It
would be helpful to incorporate some sort of metric

2

for how much information is provided for each item,
and whether that information is sufficient to properly
classify it. Secondly, The data appears to follow pat-
terns typical of other social networks. By modifying
the distance function to incorporate that the aver-
age degree follows a power law distribution it may be
possible to better visualize the data. In conclusion I
look forward to running LLE on a larger data set, and
further examining how the network of musical artists
and listeners behaves like other social networks.

References

[1] Dick de Ridder and Robert P.W. Duin. Locally
linear embedding for classification.

[2] Sam T. Roweis and Lawrence K. Saul. Nonlinear
dimensionality reduction by locally linear embed-
ding.

[3] Sam T. Roweis and Lawrence K. Saul. Think
globally, fit locally: Unsupervised learning of low
dimensional manifolds.

3

Figure 1
Map of Artists

Euclidean Distance
K = 12

100 points in 68 dimensions

Figure 2
Map of Users

Euclidean Distance
K = 16

68 points in 2000 dimensions

Figure 3
Map of Artists
KL Divergence

K = 8
100 points in 68 dimensions

Figure 4
Map of Users

KL Divergence
K = 20

68 points in 2000 dimensions

Figure 5
Map of Artists

Features which make sense

A region of primarily hip-hop

proximity of "Paul Simon" to "Simon"proximity of "The Shins" to "Shins, The"

Figure 6
Picking the best K value Map of Artists

Using KL Divergence
K = 20

Plot of differences between the
last eigenvalue in the

embedding and the eigenvalue
directly next to it. We see a

distinct maximum at K = 20, and
a peak at K = 9.

K value

Difference

5/6/05 3:10 AM /Users/blake/Desktop/ML-final-project/lle/lle.m 1 of 4

% Locally Linear Embedding
% Blake Shaw
% Machine Learning
% Columbia University
%
% [Y, distance, eigStrength] = lle(X, labels, K,dOutput, plotType)
%
% X = D x N matrix where N is the number of points in a D dimensional
space
% K = number of neighbors
% labels = labels for points
% dOutput = number of dimensions for output Y
% Y = points in a dOutput dimensional space
% distance = N x N matrix representing distances between points in N
% dimensions

function [Y, distance, eigStrength] = lle(X, labels, K,dOutput, plotType,
distanceType)

[D,N] = size(X);
disp(sprintf('LLE for %d points in %d dimensions',N,D));

disp(sprintf('Calculating Distance Matrix'));
distance = ones(N, N);

%normalize?
for i=1:N
 theSum = sum(X(:, i)) + D;
 for j=1:D
 X(j, i) = (X(j, i) + 1) / theSum;
 end
end

if distanceType == 1
 disp(sprintf('Using Euclidean Distance'));
 for i=1:N
 for j=1:N
 dist = 0;
 for k=1:D
 if(i ~= j)
 %euclidean distance
 A = X(k, i);
 B = X(k, j);
 dist = dist + (A - B)^2;
 end
 end
 distance(i, j) = dist^0.5;
 end
 end
elseif distanceType == 2
 disp(sprintf('Using KL Divergence'));
 for i=1:N
 for j=1:N
 dist = 0;
 for k=1:D

5/6/05 3:10 AM /Users/blake/Desktop/ML-final-project/lle/lle.m 2 of 4

 if(i ~= j)
 %kl divergence
 P = X(k, i);
 Q = X(k, j);
 dist = dist + P * log(P / Q);
 end
 end
 distance(i, j) = dist;
 end
 end
end

disp(sprintf('Finding %d nearest neighbors', K));
[sortedDistances,indexes] = sort(distance);

% disp(sprintf('Printing Neighbors to file...'));
% fid = fopen('UserDistances.txt', 'w');
% for printUser=1:N
% fprintf(fid, 'Neighbors for %s\n', labels(printUser, :));
% for(i=1:N)
% fprintf(fid,' --->%s -- %6f\n', labels(indexes(i,
printUser), :), distance(printUser, indexes(i, printUser)));
% end
% end
%fclose(fid);

nearestNeighbors = indexes(2:(1+K),:); %index 1 should be the point
itself

disp(sprintf('Solving for weights'));

z = zeros(D, K);
W = zeros(K,N);
for i=1:N

 %subtract Xi from every column of Z
 for j=1:K
 z(:, j) = X(:,nearestNeighbors(j,i)) - X(:,i);
 end

 C = z'*z;
 C = C + eye(K,K); %help numerical instabilities
 W(:,i) = inv(C) * ones(K, 1);
 W(:,i) = W(:,i)/sum(W(:,i));
end

disp(sprintf('Computing embedding coordinates using weights'));

M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N); %sparse matrix
for i=1:N
 w = W(:,i);
 j = nearestNeighbors(:,i);
 M(i,j) = M(i,j) - w';

5/6/05 3:10 AM /Users/blake/Desktop/ML-final-project/lle/lle.m 3 of 4

 M(j,i) = M(j,i) - w;
 M(j,j) = M(j,j) + w*w';
end

%M2 = ((eye(K, N) - W)' * (eye(K, N) - W)) % why doesnt this work?

%options.disp = 0;
%[Y,eigenvals] = eigs(M,N-1);
%eigenvals(N-2-dOutput:N-2, :);
numEigens = dOutput + 4;
[Y, eigenvals] = jdqr(M, numEigens, 0);
eigValues = diag(eigenvals);

eigStrength = eigValues(dOutput+1+1) - eigValues(dOutput+1);
Y = Y(:,2:dOutput+1)';

if plotType == 1
 disp(sprintf('Plotting'));
 figure(1);
 clf;
 % plot(Y(1, :), Y(2, :), 'r+');
 % axis([-1, 1, -1, 1]);

 if dOutput == 3
 for i=1:N
 for j=1:min(5, K)
 line([Y(1, i), Y(1, nearestNeighbors(j, i))], [Y(2, i),
Y(2, nearestNeighbors(j, i))], [Y(3, i), Y(3, nearestNeighbors(j, i))]
);
 end
 end

 for i=1:N
 text(Y(1, i), Y(2, i), Y(3, i), labels(i, :), 'EdgeColor',
'blue', 'BackgroundColor', 'white');
 end
 axis([-1, 1, -1, 1, -1, 1]);
 else
 for i=1:N
 for j=1:min(5, K)
 line([Y(1, i), Y(1, nearestNeighbors(j, i))], [Y(2, i),
Y(2, nearestNeighbors(j, i))]);
 end
 end

 for i=1:N
 text(Y(1, i), Y(2, i), labels(i, :), 'EdgeColor', 'blue',
'BackgroundColor', 'white');
 end
 axis([-1, 1, -1, 1]);
 end
 title('Map');

 figure(2);
 clf;

5/6/05 3:10 AM /Users/blake/Desktop/ML-final-project/lle/lle.m 4 of 4

 bar(eigValues(2:dOutput+1+2));
 axis([0, length(eigValues) + 1, 0, max(eigValues) + 0.1]);
 title('Eigenvalues');
end

5/6/05 3:11 AM /Users/blake/Desktop/ML-final-project/lle/lleDemo.m 1 of 1

%lleDemo
% a script for running lle tests

%set this variable to the path which contains the data folder
dataFolder = '/Users/blake/Desktop/ML-final-project/data/';

%1 -- artists
%2 -- users
%3 -- k test artists
%3 -- k test users
demo = 1;

if demo==1
 load([dataFolder 'UserSongs.data']);
 UserSongs = UserSongs(1:100, :);
 itemLabels = readtextfile([dataFolder 'ItemLabels.txt']);
 [Y, distances] = lle(UserSongs', itemLabels, 20, 2, 1, 2);
elseif demo==2
 load([dataFolder 'UserSongs.data']);
 UserSongs = UserSongs(:, :);
 itemLabels = readtextfile([dataFolder 'UserLabels.txt']);
 [Y, distances] = lle(UserSongs, itemLabels, 20, 2, 1, 1);
elseif demo==3
 load([dataFolder 'UserSongs.data']);
 UserSongs = UserSongs(1:100, :);
 itemLabels = readtextfile([dataFolder 'ItemLabels.txt']);

 eStrengths = [];
 for i=2:99
 [Y, distances, eigStrength] = lle(UserSongs', itemLabels, i, 2,
1, 2);
 eStrengths = [eStrengths eigStrength]

 figure(3);
 title('EigenStrength vs. K');
 clf;
 bar(eStrengths);
 end
elseif demo==4
 load([dataFolder 'UserSongs.data']);
 UserSongs = UserSongs(:, :);
 itemLabels = readtextfile([dataFolder 'UserLabels.txt']);

 eStrengths = [];
 for i=2:55
 [Y, distances, eigStrength] = lle(UserSongs, itemLabels, i, 2, 1,
2);
 eStrengths = [eStrengths eigStrength]

 figure(3);
 clf;
 bar(eStrengths);
 title('EigenStrength vs. K');
 end

end

