
CS4731 Project: Gesture Recognition

Hart Lambur
Department of Computer Science

Columbia University
hal2001@columbia.edu

Blake Shaw
Department of Computer Science

Columbia University
bs2018@columbia.edu

December 21, 2004

1 Introduction

1.1 The “Idea”

The user interface (UI) of the personal computer has
evolved from a text-based command line to a graphical
interface with keyboard and mouse inputs. Undoubtedly,
human-computer interaction will continue to evolve to-
wards more natural forms of input, like human movement
recognition. Popular culture has long viewed computer
vision and visual gesture recognition as one of the “fu-
ture” ways we will interact with our computers; indeed,
many high-end 3D environments already use some form
of human movement recognition in their user interfaces.
In our project, we explore the feasibility of implementing
a simple system to understand a basic set of hand gestures.

Our main interest is exploring the computer vision tech-
niques involved in real-time tracking of visual input and
the analysis of that input to recognize “gestures”. In the
most general sense, recognizing gestures seems to be an
extremely complex task. A sophisticated gesture recog-
nition system would have to incorporate many complex
algorithms spanning many fields of computer science as
well as incorporate an abundance of knowledge about the
nature of human movement. Building a robust system
which could recognize a large set of motions is a very
compelling problem, but implementing this kind of sys-
tem is currently not feasible for a semester long project.
However, by defining a limited vocabulary of gestures, we
can create a compact system which can effectively recog-
nizes this set of simple gestures.

In our system, the user controls a well-defined visual

input (in our case, a bright thimble of LEDs worn on
the index finger) to perform certain basic computer tasks.
Simple left/right/up/down gestures are recognized under
variable light conditions with little or no operator training;
using this simple four gesture vocabulary, basic computer
functions can be controlled. Below, we give a brief out-
line of some of our initial project goals before discussing
the details of our user interface and implementation.

1.2 Initial Project Goals

Realizing the broad reach of our gesture recognition
project across many disciplines and fields of research, we
carefully documented our project goals during the plan-
ning phase. Below we outline what we attempted to
accomplish, and what we has been successfully imple-
mented.

i. Tracking user input: Initially, we needed to track
the real-time position of the user input. Using a self-
constructed LED finger-light, we were able to track the
position of the user’s finger under varying light condi-
tions. By constraining the environment to search for a
single, neon-green-colored LED object in an otherwise
average-intensity scene, we have been able to achieve ac-
curate results using simple techniques.

ii. Gestures in a direction: To recognize our basic four
gesture vocabulary, we implemented an algorithm to rec-
ognize user movements in the left/right/up/down direc-
tions. This task required us to take into account the speed
at which the gesture is made in order to differentiate be-
tween deliberate actions and general random movement.
By keeping track of the last N points of the user’s path,

1

CS4731 Project: Gesture Recognition 2

we analyze this point list for strong movements in a direc-
tion by averaging the local distance between points. We
compute these averages in both the x and y directions sep-
arately and, using a threshold corresponding to gesture-
speed, we determine the general direction of a swift move-
ment.

iii. “Holding” gestures: As an extension to our ba-
sic gesture vocabulary, we extended our system to recog-
nize “holding gestures”—the visual equivalent to holding
down a mouse button. This problem is more complicated
than simply recognizing the user swiping in a direction. It
involves recognizing a fast movement in a direction and
gauging if the user remains a certain distance away from
some sort of relative center which, when the user returns
to, constitutes “releasing the button.” Our system defines
the relative center on a gesture-by-gesture basis, consid-
ering the center to be the initial starting location of the
movement. Establishing a robust method for tracking this
relative center and holding motion was one of the more
challenging aspects of the project.

iv. Recognizing other motions: There are innumerable
extensions to our gesture recognition system that would
enhance our gesture vocabulary. Ideas include matching
gestures to actions using shapes (like drawing a circle
in the air), or recognizing sequences/patterns of simple
up/down/left/right motions. This was one aspect of the
project which we were unable to spend much time devel-
oping.

v. Integrating system with computer: The final step of
our project connected the gesture recognition system to
basic functions of the computer. We developed a back-
end to execute simple shell and apple scripts to control
a variety of computer applications using decisions from
our gesture recognition system. Our scripting framework
allows for extreme flexibility in developing new applica-
tions for the system. Currently, we can control the func-
tions of an MP3 player (play/pause/volume/track selec-
tion), and surf web pages (using back/forward/link se-
lections commands) with our basic gesture vocabulary.
Future applications include basic video game control for
Mario Brothers (or an equivalent game), and scrolling
through text applications.

Figure 1: The Apple iSight webcam used in our vision sys-
tem. For gesture recognition, the iSight is particularly well-
suited since it sits on top of the user’s monitor, at eye level. By
placing the camera directly in front of the user, motions can be
directed at the computer screen rather than at some off-axis cam-
era, allowing for a more intuitive interface.

2 User Interface
Developing an interface through which one can control a
computer with simple hand gestures is not an easy task.
People have grown accustomed to using well defined in-
put devices to interact with computers—devices such as
the keyboard and mouse easily capture user input in a well
understood fashion. Designing a computer system to rec-
ognize hand movements presents difficult problems, both
in developing the algorithms to handle such a task, and in
developing an intuitive interface through which users can
interact naturally with the system.

We designed our interface around two basic hard-
ware components: the Apple iSight webcam, and a light
glove/wand. After a quick overview of this hardware, we
comment on the general setup of our user interface, and
some of the problems we have encountered while design-
ing an intelligent, intuitive system to recognize hand ges-
tures.

2.1 Computer Hardware

As the eyes of our vision system, we use the Apple iSight
digital webcam to capture a real-time video feed (see fig-
ure ??). The iSight is a beautifully designed webcam ide-
ally suited to our gesture recognition system. The cam-
era’s fast auto-focus and auto-exposure allow sharp im-

CS4731 Project: Gesture Recognition 3

Figure 2: The four LED thimble attached to a user’s index fin-
ger. The four LEDs are splayed to distribute the light intensity
over a range of angles. This allows a bright light to be seen by
the camera no matter what orientation the user prefers to keep
their finger.

ages to be captured at a high frame rates, a feature that
has provided indispensable when attempting to track fast
gesture motions of the user. Furthermore, the camera is
specifically designed to sit on top of the computer mon-
itor, positioning the lens at eye level directly in front of
the user, and not off-center on a desk like many other
webcams. By positioning the camera directly in front of
the user, making gestures is more natural, and the user is
given the impression that he or she is interacting directly
with the computer monitor and not with some distant cam-
era.

In an effort to improve the robustness of the system,
we designed a light glove/wand which the user can use to
interact with the gesture recognition system. We soldered
four bright green LEDs together and attached them to a
9V battery pack. Figure ?? shows the LED finger-thimble
attached to the user’s index finger. Holding the battery
pack in the palm of his or her hand, the user can then
“point” with their index finger and have the vision system
track the bright green LEDs for gesture recognition.

2.2 Defining a Relative Center

In an effort to keep our gesture recognition system as nat-
ural to use as possible, we wanted to ensure that the user’s
motions could be recognized at any position within the
camera’s field of view, and not just in the center of the
video frame. To do this, we developed a concept of a rel-
ative center, to allow the user to make gestures starting
from any place inside the frame of the video feed.

In our system, the relative center is defined as the po-
sition from which the user’s hand must move a certain
amount within a given time frame for the hand motion to
be recognized as a gesture. By changing the time and
speed that the user’s hand must move away from this
“center”, the sensitivity of the system to user movements
(that are not intended to be gestures) can be adjusted.

To provide the user with some visual feedback for their
motions, the relative center position of the user is shown
in real-time overlaid on top of the video feed. The cur-
rent center position is drawn on top of the image with a
standard cross-hair target; furthermore, the outer circle of
the cross-hair defines how far the user must move from
the center position (within a certain time frame) to trig-
ger an action. It is also important to note that the video
image is mirrored when displayed to the user, creating a
more natural environment for the user to observe his or
her interaction with the vision system.

2.3 Gesture Recognition

For our basic system, we implemented a simple vocabu-
lary of four gestures: left, right, up and down. Given our
relative center, this left/right/up/down motions are recog-
nized when the user moves outsider the outer circle of the
center cross-hair within a given time. Details of the algo-
rithmic solution to this problem are discussed below.

The system is calibrated so that slow, wandering hand
movements are not recognized as gestures. These types
of movements are slow enough to not move outside the
specified motion distance within the specified time. By
allowing the user to move his or her hand freely up to a
reasonable threshold, the system is robust to false posi-
tives, motions that were not intended to be recognized as
gestures.

CS4731 Project: Gesture Recognition 4

Figure 3: Two screenshots of the system tracking “holding” gestures. Blake’s index finger is tracked using the cross-hair as seen
above. When a quick motion is made, the system remembers the relative center from which the motion originated, and freezes that
position with the green holding circle. As long as Blake keeps his finger outside the green holding radius, the action is “held” and
the cross-hair displays the direction of the action in red. When Blake brings his finger back inside the green circle, the holding
gesture is turned off.

2.4 “Holding” Gestures

As a final element to our user interface, we extended our
basic four gesture vocabulary to recognize “holding” ges-
tures. In essence, we designed our UI to differentiate be-
tween quick movements outside the relative center and
back, and slow movements that are held away from the
relative center. We gauge the initial fast movement away
from the center in the same way as before—gestures out-
side a specified distance within a give time frame are rec-
ognized as actions—but the system checks to see if the
movement is held away from the center for a given time
interval following the quick action.

The UI provides the the user with some visual feedback
if they are holding a gesture. If the user quickly moves
outside the outer circle of the cross-hair triggering a fast
motion, but maintains his position there for longer than a
half second or so, the cross-hair turns red and “HOLD-
ING” is displayed in the top right corner of the display
(see figure ??). The relative center cross-hair from before
the user’s initial quick action is “frozen” on the display,
and the holding action will not be released until the user
moves back within the holding radius of the frozen cen-

ter. With this visual information, holding gestures become
a natural extension to the standard left/right/up/down mo-
tions, and a new user is quickly able to learn how to use
“holding” gestures.

3 Implementation
The implementation for our gesture-recognition system
is divided into six main areas: building the light source
to track, capturing video, tracking the path of the light
source, recognizing gestures from path analysis, display-
ing the graphical interface, and executing scripts upon
completion of gestures. Figure ?? shows an outline of
our code structure.

3.1 Building the Light Source
There are many considerations for picking an object to
track, because we want to find an easy means by which
we can distinguish the object from the background un-
der a variety of lighting conditions. Initially we simply
tracked a green highlighter, using its distinct color to iden-

CS4731 Project: Gesture Recognition 5

PathTracker
DIR_THRESH
DIST_THRESH
GREEN_BLUE_THRESHOLD
GREEN_THRESHOLD
HOLD_COUNTER_SIZE
HOLDING_RADIUS
PATH_SIZE
SEARCH_RADIUS
TRACK_OBJECT_SIZE
XSIZE
YSIZE
path
missedFind
lastMovement
lastFoundPoint
isMotion
isHolding
holdingPoint
holdCounter
createAndShowGUI()
printPath()
scanPath()
thresholdPixel()
updateTracker()
main()

VideoCapture
height
width
image
raster
dispose()
getHeight()
getWidth()
getNextImage()
getNextRaster()

VideoArea
controller
currentFrame
VideoArea()
draw()
getPreferredSize()
paintComponent()

Figure 4: A class diagram for project’s Java implementation.
The main PathTracker class calls VideoCapture to grab images
from the iSight camera and uses VideoArea to draw the pro-
cessed images back on the display using Java’s Swing libraries.

tify it. There are not many every day objects that are
bright green, so this was an adequate choice. However, in
order to make our system more robust to different back-
grounds and lighting conditions, we decided to use four
green LEDs attached to the user’s finger (see figure ??).
The green LEDs are easy to identify because their red and
green intensities are registered by the camera as almost
maxed out, allowing us to pick a high threshold. Further-
more, the blue channel is approximately 20% less bright
then the red and green channels. We use this fact to distin-
guish the green LEDs from other bright lights. We found
the LED system seems to be quite robust, working in a
variety of visual environments including those containing
green objects.

Figure 5: We constructed an LED finger thimble out of four
green LED lights. The LEDs are solder together in a serial cir-
cuit and connected to a 9V battery pack.

3.2 Capturing Video

We decided to use the Apple iSight webcam as the hard-
ware for our video capture system. For software, we
use a Java Class called VideoCapture which simplifies
the Quicktime library routines for grabbing each frame
of video as it is read from the iSight. We obtained the
basic framework for the VideoCapture class from the in-
ternet and then modified it for our own purposes (see
references). From the VideoCapture class, we obtain
each frame as a Raster object which we then wrap into
a BufferedImage. This setup allows for easy access to
pixels of each frame.

3.3 Tracking the Path of the Light Source

For each frame we scan through every pixel and deter-
mine if the pixel is part of the light source or not. We im-
plement this by checking if the red and green components
of the pixel’s color are above a specific threshold. Also
we make sure that the difference between the green chan-
nel and the blue channel is above a certain threshold; this
blue-green test allows us to pick out the light source from
other non-green bright light sources in the scene. We sum
up the x and y positions for each pixel found to be part of

CS4731 Project: Gesture Recognition 6

the light source and keep a count of how many of these
pixels have been found. If this count is above a certain
threshold, we consider the light-source to be in the scene,
and we calculate its position using the average of the x
and y components for each pixel found to be part of the
light source. For each frame we then register the position
of the light source in a global path list, which keeps track
of the last N positions of the light source found in the last
N frames.

3.3.1 Tracking Optimization

We recognized that scanning every pixel of every frame
was not necessarily needed to effectively find the light
source in the scene. By assuming a certain amount of
locality of the user’s movement, we can simply search a
small window around the user’s last know position. How-
ever, if the light source is not found within this small win-
dow, a flag is marked, and on the next pass, the entire
frame is scanned in order to ensure that the light source
is no where in the frame. Figure ?? shows an example of
tracking the light source with the localize search window.

Figure 6: Here we see the search window used for our tracking
optimization overlaid on the video display. If the light source is
not found by searching this smaller area, the entire video frame
is searched in the next iteration.

3.4 Path Analysis for Gesture Recognition

We analyze this global path list of positions of the light
source over the last N frames to determine if a gesture has
been made. The algorithm first computes the average dis-
tance between all points on the list, if this average distance
is greater then a certain threshold, there must have been a
swift movement, and therefore we recognize that a ges-
ture has taken place (see figure ??). The algorithm then
considers the sum of the differences between the points
in both the x and y components. If the sum of the dif-
ferences of the x components of all points on the path is
greater then sum of the differences of the y components,
we can determine the motion to be in the x direction, and
vice versa. By looking at the sign of the sum of the dif-
ferences we can distinguish up from down, and left from
right movements.

We do further analysis with regard to the gesture equiv-
alent of holding a button versus simply pressing a button.
When the initial movement is made, the last point on the
global path list is marked as a special return point. Af-
ter the initial movement, the user has a certain number of
frames to return the light-source to within a certain hold-
ing radius of this return point, in order to register pressing
the button. Otherwise, if the user remains outside a certain
radius of the return point, the system recognizes this as a
“holding gesture” until the user finally returns to within
the holding radius of the return point.

3.5 Displaying the Graphical Interface

We chose to use the Java Swing library for displaying the
graphics and interface for our system. For each frame
we draw the BufferedImage coming from the video feed
to the screen, and then overlay a variety of visual aids.
We draw a cross hair around the current position of the
light source (see figure ??). When a motion is made in
a specific direction, that portion of the cross-hair is col-
ored red; when the user executes a holding gesture, the
“HOLDING” is printed on the screen. Furthermore, when
a decision is made about the direction of the gesture, that
decision is printed on the screen (left, right, up, down).

CS4731 Project: Gesture Recognition 7

5, 10

5, 35

7, 55

4, 90

5, 123

Figure 7: The above diagram shows the path analysis for path-
size = 5. In this example, distance counter registers as 113.243
based on the sum of the distances between these 5 points. Since
distance counter > DIST THRESH, an action is triggered in the
specified direction (here the gesture is down).

3.6 Executing Scripts upon Completion of
Gestures

Upon recognizing that a gesture has taken place, the sys-
tem uses a Java Process object combined with the Mac
OS X command line utility ”osascript” to execute Apple-
scripts on the host machine. These scripts are defined in
external files, and can be easily modified for a variety of
applications. Furthermore these scripts can simulate ba-
sic keyboard commands applicable to all applications run-
ning.

Figure 8: Here we see images of the common elements used in
our UI design. The cross-hair on the left shows the user’s current
position, while the green return circle on the right is used to mark
the relative center when holding a gesture.

4 Conclusion and Discussion

Producing a gesture recognition system robust to differ-
ent users under different lighting conditions is not an easy
task. Real-time processing in computer vision is hard!
Developing a responsive, usable system took considerable
effort. However, we are very satisfied with our results. By
imposing intelligent and meaningful limits on the visual
environment, and by developing an intuitive user inter-
face, we were able to create a simple yet robust gesture
recognition system. Below, we outline our project suc-
cesses and failures and discuss the current state-of-the-art
in gesture recognition.

4.1 Project Successes and Failures

Simple algorithms and techniques proved to work best
when trying to build a usable vision system that works
in real-time. Since real-time video processing demands
considerable CPU power, we needed to impose intelligent
limits on the visual environment that would simplify our
algorithmic complexity. We established two such limits:
we required the user to wear an LED thimble, and we lim-
ited our gesture set to movements in the four cardinal di-
rections.

The initial problem of tracking a visual input, like a
light wand, is easily done in a setting without time con-
straints, but this problem quickly becomes computation-
ally intractable at 30 frames per second. To reduce the
CPU power needed to find an object in the video stream,

CS4731 Project: Gesture Recognition 8

we require the user to wear the green LED thimble, giving
us a unique, bright light source to search for. The unusual
neon green color allows us to find and track the LEDs in a
single pass through the image’s pixels using nothing more
than a simple threshold search technique.

Attempting to deduce inputs from a user wildly mov-
ing his or her finger all over the screen is impossible, even
with the most complicated and robust of gesture recog-
nition systems. But detecting gestures becomes tractable
when the vocabulary is limited in some meaningful way.
We recognize gestures in the four cardinal directions. Our
simple path tracking algorithm deduces movements by
analyzing a list of past positions and determining if the
user has moved a certain threshold in a certain direction
within a given time limit. The simplicity of the system
allows for robust recognition of simple gestures for dif-
ferent users and different style of motion—with little or
no effort a new operator can become comfortable with the
controls without the algorithm having to adapt to the new
user’s input style. This robustness is not common in more
complicated environments; given the “noise” common to
human motion (such as the swaying of a user’s hand), rec-
ognizing more than a few simple gestures demands new
techniques to “learn” a specific user’s style of input. We
were quite happy to find that our simple path tracking al-
gorithm was fast, responsive and robust to different users
motions.

With the pervasive use of personal computers in mod-
ern society, nearly everyone has an understanding of how
keyboards and mice provide input to a GUI. However,
gesture recognition is not common. Few people have in-
teracted with their computers by pointing with their fin-
gers or simply waving their hands. This means that an
intelligent user interface design is crucial to building a
gesture recognition system that can be quickly understood
by new users. We feel that we successfully implemented
such an interface. The video feed is mirrored to the user,
and a bright cross-hair is displayed over the LED thimble.
When a quick motion is made, a holding circle showing
the relative center from which this motion originated is
displayed, giving the user visual input to decide if they
want to “hold” the gesture. When combined with robust
gesture recognition, this intelligent user interface allows
new operators to become “experts” in the system quickly
and effortlessly.

For all our project successes, we encountered our share

of disappointments. Despite our best attempts to limit
the algorithmic complexity of our recognition system,
the software is computationally intensive, and only offers
smooth video when a small frame size is used. Further-
more, there is a short lag time between the user’s motions
and the video display; while this lag is small, is can be
aggravating to a user who repeats several motions think-
ing the first one was not recognized. Some of these per-
formance issues likely stem from our use of the Java pro-
gramming language. It is reasonable to assume that native
C implementations may result in improved performance,
allowing for smoother, larger video display with little lag.

4.2 Future Directions

Building a simple gesture recognition system was a peda-
gogically rewarding and instructive experience (and a lot
of fun). But we still feel we only touched the tip of the
iceberg. Below we list some of possible extensions of our
project:

i. Multiple Gestures: We limited our gesture vocabu-
lary to a simple set of four gestures, but there are many in-
teresting applications that involve more gestures and mo-
tions.

ii. Two or more light systems: Putting LEDs on multi-
ple fingers would allow for many more motions and types
of motion to be detected. LEDs on the thumb and in-
dex finger would allow users to make rotational move-
ments that could, among other things, scroll through doc-
uments/windows, or zoom in and out of images.

iii. Tracking without LEDs: The most useful hand ges-
ture recognition system wouldn’t require the use of an
LED glove or light wand. Accurately tracking the posi-
tion of a user’s fingers is an exceptionally difficult prob-
lem, however, and requires much more complicated ma-
chine learning algorithms to recognize fingers under vary-
ing light conditions.

iv. Recognizing hand posture: Besides tracking the
position of a user’s fingers, much information can be
deduced from a user’s hand posture. Developing a system
to recognize if the user is holding out their palm (to stop
a program, for example), or is holding a clenched fist
would be useful in building a true vision-based computer
interface.

CS4731 Project: Gesture Recognition 9

Current state-of-the-art research focuses around psy-
cholinguistic studies that describe a philology of gestures.
Researchers have categorized hand movements into con-
versational gestures, controlling gestures, manipulative
gestures, and communicative gestures in an effort to bet-
ter distinguish and interpret our hand motions. Sign lan-
guage, an important and highly structured form of com-
municative gestures, has been an obvious focus. More
complicated algorithms using statistical machine learning
techniques, like Bayesian networks and Hidden Markov
Models have been used to semantically model meaning-
ful human movements, with good results. These cur-
rent efforts have produced far more complicated systems
then we have implemented, being able to recognize move-
ments without the visual limitations we have imposed,
and point to a future where visual gesture recognition will
be as pervasive as today’s keyboard and mouse.

CS4731 Project: Gesture Recognition 10

A Code Listing

A.1 figures/PathTracker.java

import javax.swing.*;
import java.awt.*;
import java.awt.image.*;
import java.awt.geom.AffineTransform;
import java.util.Vector;

public class PathTracker{

private static final int XSIZE = 160;
private static final int YSIZE = XSIZE*3/4;
private static final int PATH_SIZE = 5;

private static final int GREEN_THRESHOLD = 240;
private static final int GREEN_BLUE_THRESHOLD = 80;
private static final int TRACK_OBJECT_SIZE = 6;
private static final int HOLD_COUNTER_SIZE = 9;
private static final int DIR_THRES = 50;
private static final int DIST_THRES = 10*PATH_SIZE;
private static final int HOLDING_RADIUS = 25;
private static final int SEARCH_RADIUS = 25;

private static String APP_NAME = "scripts/safari";

private String lastMovement = null;
private boolean isHolding = false;
private boolean isMotion = false;
private Point holdingPoint;
private int holdCounter;
private Vector path = new Vector(); //Current Path
private boolean missedFind = true;
private Point lastFoundPoint = new Point(XSIZE/2, YSIZE/2);

public int thresholdPixel(BufferedImage image, int x, int y){
int blueGreenNum, greenNum;
Color c = new Color(image.getRGB(x,y));
greenNum = c.getGreen();
blueGreenNum = greenNum - c.getBlue();

if (greenNum > GREEN_THRESHOLD && blueGreenNum > GREEN_BLUE_THRESHOLD) return 1;
else return 0;

}

CS4731 Project: Gesture Recognition 11

public Point findObject(BufferedImage image) {
int l;
int area = 0, posX = 0, posY = 0;
double aveX = 0, aveY = 0;
Color c;

if(!missedFind){
for (int y=lastFoundPoint.y - SEARCH_RADIUS;

y<lastFoundPoint.y + SEARCH_RADIUS; y++){
for (int x=lastFoundPoint.x - SEARCH_RADIUS;

x<lastFoundPoint.x + SEARCH_RADIUS; x++){
if(x > 0 && x < image.getWidth() && y > 0 && y < image.getHeight()){

l = thresholdPixel(image, x, y);
if(l != 0){

//gather area and positions of each objects
area++;
posX += x;
posY += y;

}
}

}
}

} else {
for (int y=0; y<image.getHeight(); y++){

for (int x=0; x<image.getWidth(); x++){
l = thresholdPixel(image, x, y);
if(l != 0){

//gather area and positions of each objects
area++;
posX += x;
posY += y;

}
}

}
}

aveX = (double)posX/area;
aveY = (double)posY/area;
Point newP;
if(area > TRACK_OBJECT_SIZE){

newP = new Point((int)Math.floor(aveX), (int)Math.floor(aveY));
lastFoundPoint = newP;
missedFind = false;
return newP;

} else {

CS4731 Project: Gesture Recognition 12

lastFoundPoint = new Point((int)Math.round(XSIZE/2), (int)Math.round(YSIZE/2));
missedFind = true;
//System.out.println("MISSED TRACKING...");
return null;

}
}

public void printPath(){
Point p;
System.out.println("Path:");
for(int i=0; i<path.size(); i++){

System.out.println("(" + ((Point)path.get(i)).x + ", " +
((Point)path.get(i)).y + ")");

}
}

public String scanPath()
{

Point p1, p2;
double distanceCounter = 0;
double xDirectionCounter = 0, yDirectionCounter = 0;
double slope;
String movement = null;
String decision = null;

for(int i=0; i<path.size()-1; i++){
p1 = (Point)path.get(i);
p2 = (Point)path.get(i+1);
distanceCounter += Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2));
xDirectionCounter += (p1.x - p2.x);
yDirectionCounter += (p1.y - p2.y);

}

if(distanceCounter > DIST_THRES){
if(Math.abs(xDirectionCounter) > Math.abs(yDirectionCounter)) {

//Movement is more horizontal
if(xDirectionCounter < 0){

movement = "Right";
} else {

movement = "Left";
}

} else {
// movement is more vertical
if(yDirectionCounter > 0){

movement = "Up";
} else {

CS4731 Project: Gesture Recognition 13

movement = "Down";
}

}
}

if(isMotion){
boolean insideHoldRadius = false;
Point curPoint = (Point)path.lastElement();

if(Math.sqrt(Math.pow(holdingPoint.x - curPoint.x, 2) +
Math.pow(holdingPoint.y - curPoint.y, 2)) < HOLDING_RADIUS)

insideHoldRadius = true;

if(insideHoldRadius){
isMotion = false;
isHolding = false;
decision = lastMovement;
lastMovement = null;
path = new Vector();

}
else if(--holdCounter <= 0) {

isHolding = true;
decision = lastMovement;

}

}
else if(isHolding == false && movement != null && !movement.equals(lastMovement)){

System.out.println(movement + " movement started:\t" +
"Position is [" + xDirectionCounter + "," + yDirectionCounter + "]\t" +
"Average Dist is " + distanceCounter/path.size());

isMotion = true;
holdingPoint = (Point)path.get(0);
holdCounter = HOLD_COUNTER_SIZE;
lastMovement = movement;

}

return decision;
}

public String updateTracker(Point p) {
if(p != null) {

path.add(p);
if(path.size() > PATH_SIZE){

path.removeElementAt(0);
}
return scanPath();

CS4731 Project: Gesture Recognition 14

}
return null;

}

/**
* Create the GUI and show it. For thread safety,
* this method should be invoked from the
* event-dispatching thread.
*/
private void createAndShowGUI() {

//Make sure we have nice window decorations.
JFrame.setDefaultLookAndFeelDecorated(true);

//Create and set up the window.
JFrame frame = new JFrame("Path Tracker");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Set up the content pane.
VideoArea videoArea = new VideoArea(this);
frame.getContentPane().add(videoArea);

//Display the window.
frame.pack();
frame.setVisible(true);

while(true) {
videoArea.draw();

}
}

public static void main(String[] args) {
//Schedule a job for the event-dispatching thread:
//creating and showing this application’s GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {

public void run() {
PathTracker controller = new PathTracker();
controller.createAndShowGUI();

}
});
System.out.println("Exited SwingUtilities.invokeLater()");

}

public static class VideoArea extends JComponent {

private static final int DOT_RADIUS = 3;
private static final int XHAIR_LENGTH = 20;

CS4731 Project: Gesture Recognition 15

private static final int XHAIR_RADIUS = 20;

private VideoCapture vc;
private PathTracker controller;
private BufferedImage currentFrame = new BufferedImage(XSIZE, YSIZE,

BufferedImage.TYPE_INT_RGB);

private static Process process;
private static boolean runScript = true;

public VideoArea(PathTracker controller) {
this.controller = controller;

try {
vc = new VideoCapture(XSIZE,YSIZE);

} catch (Exception e) {
System.err.println("Error initalizing camera: " + e);
e.printStackTrace();
System.exit(1);

}

}

public Dimension getPreferredSize() {
return new Dimension(XSIZE,YSIZE);

}

public void draw() {

try {
// Flip the image horizontally
AffineTransform tx = AffineTransform.getScaleInstance(-1, 1);
tx.translate(-currentFrame.getWidth(null), 0);
currentFrame.setData((new AffineTransformOp(tx,

AffineTransformOp.TYPE_NEAREST_NEIGHBOR)).filter(
vc.getNextRaster(), null));

} catch (Exception e) {
System.out.println("Error getting image: " + e);
e.printStackTrace();

}

Point p = controller.findObject(currentFrame);
String decision = controller.updateTracker(p);
Point h = controller.holdingPoint;
String exString = "";

CS4731 Project: Gesture Recognition 16

Graphics g = this.getGraphics();

g.drawImage(currentFrame, 0, 0, null);
if(p != null) {

g.setColor(Color.RED);
g.fillOval(p.x - DOT_RADIUS, p.y - DOT_RADIUS, DOT_RADIUS*2, DOT_RADIUS*2);
g.setColor(Color.GRAY);
g.drawOval(p.x - XHAIR_RADIUS, p.y - XHAIR_RADIUS,

XHAIR_RADIUS*2, XHAIR_RADIUS*2);
g.drawLine(p.x - 4*DOT_RADIUS, p.y, p.x - XHAIR_LENGTH, p.y);
g.drawLine(p.x + 4*DOT_RADIUS, p.y, p.x + XHAIR_LENGTH, p.y);
g.drawLine(p.x, p.y - 4*DOT_RADIUS, p.x, p.y - XHAIR_LENGTH);
g.drawLine(p.x, p.y + 4*DOT_RADIUS, p.x, p.y + XHAIR_LENGTH);

g.setColor(Color.RED);

if(decision != null){
if(decision.equals("Left")){

g.drawLine(p.x + 4*DOT_RADIUS, p.y, p.x + XHAIR_LENGTH, p.y);
exString = "osascript " + APP_NAME + "-key-left.scpt";

} else if(decision.equals("Right")){
g.drawLine(p.x - 4*DOT_RADIUS, p.y, p.x - XHAIR_LENGTH, p.y);
exString = "osascript " + APP_NAME + "-key-right.scpt";

} else if(decision.equals("Up")){
g.drawLine(p.x, p.y - 4*DOT_RADIUS, p.x, p.y - XHAIR_LENGTH);
exString = "osascript " + APP_NAME + "-key-up.scpt";

} else if(decision.equals("Down")){
g.drawLine(p.x, p.y + 4*DOT_RADIUS, p.x, p.y + XHAIR_LENGTH);
exString = "osascript " + APP_NAME + "-key-down.scpt";

}

if(runScript && !controller.isHolding){
try{

process = Runtime.getRuntime().exec(exString);
} catch (Exception i){

System.out.println(i);
}

}
}

}

if(controller.isHolding) g.drawString("Holding", XSIZE - 50, 20);
if(decision != null) g.drawString(decision, 20, 20);

g.setColor(Color.GREEN);
if(controller.isMotion && h != null){

CS4731 Project: Gesture Recognition 17

g.fillOval(h.x - DOT_RADIUS, h.y - DOT_RADIUS, DOT_RADIUS*2, DOT_RADIUS*2);
g.drawOval(h.x - HOLDING_RADIUS, h.y - HOLDING_RADIUS,

HOLDING_RADIUS*2, HOLDING_RADIUS*2);
}

}

protected void paintComponent(Graphics g) {
draw();

}

} // end public static class VideoArea()

} // end public class PathTracker()

A.2 figures/VideoCapture.java
import java.awt.Image;
import java.awt.image.*;
import java.io.File;

import javax.imageio.ImageIO;

import quicktime.QTRuntimeException;
import quicktime.QTRuntimeHandler;
import quicktime.QTSession;
import quicktime.qd.PixMap;
import quicktime.qd.QDGraphics;
import quicktime.qd.QDRect;
import quicktime.std.StdQTConstants;
import quicktime.std.sg.SGVideoChannel;
import quicktime.std.sg.SequenceGrabber;
import quicktime.util.RawEncodedImage;

public class VideoCapture {
private SequenceGrabber grabber;
private SGVideoChannel channel;
private RawEncodedImage rowEncodedImage;

private int width;
private int height;
private int videoWidth;

private int[] pixels;
private BufferedImage image;
private WritableRaster raster;

CS4731 Project: Gesture Recognition 18

public VideoCapture(int width, int height) throws Exception {
this.width = width;
this.height = height;
try {

QTSession.open();
QDRect bounds = new QDRect(width, height);
QDGraphics graphics = new QDGraphics(bounds);
grabber = new SequenceGrabber();
grabber.setGWorld(graphics, null);
channel = new SGVideoChannel(grabber);
channel.setBounds(bounds);
channel.setUsage(StdQTConstants.seqGrabPreview);
//channel.settingsDialog();
grabber.prepare(true, false);
grabber.startPreview();
PixMap pixMap = graphics.getPixMap();
rowEncodedImage = pixMap.getPixelData();

videoWidth = width + (rowEncodedImage.getRowBytes() - width * 4) / 4;
pixels = new int[videoWidth * height];
image = new BufferedImage(

videoWidth, height, BufferedImage.TYPE_INT_RGB);
raster = WritableRaster.createPackedRaster(DataBuffer.TYPE_INT,

videoWidth, height,
new int[] { 0x00ff0000, 0x0000ff00, 0x000000ff }, null);

raster.setDataElements(0, 0, videoWidth, height, pixels);
image.setData(raster);
QTRuntimeException.registerHandler(new QTRuntimeHandler() {

public void exceptionOccurred(
QTRuntimeException e, Object eGenerator,
String methodNameIfKnown, boolean unrecoverableFlag) {

System.out.println("what should i do?");
}

});
} catch (Exception e) {

QTSession.close();
throw e;

}
}

public void dispose() {
try {

grabber.stop();
grabber.release();
grabber.disposeChannel(channel);
image.flush();

CS4731 Project: Gesture Recognition 19

} catch (Exception e) {
e.printStackTrace();

} finally {
QTSession.close();

}
}

public int getWidth() {
return width;

}

public int getHeight() {
return height;

}

public int getVideoWidth() {
return videoWidth;

}

public int getVideoHeight() {
return height;

}

public void getNextPixels(int[] pixels) throws Exception {
grabber.idle();
rowEncodedImage.copyToArray(0, pixels, 0, pixels.length);

}

public Image getNextImage() throws Exception {
grabber.idle();
rowEncodedImage.copyToArray(0, pixels, 0, pixels.length);
raster.setDataElements(0, 0, videoWidth, height, pixels);
image.setData(raster);
return image;

}

public Raster getNextRaster() throws Exception {
grabber.idle();
rowEncodedImage.copyToArray(0, pixels, 0, pixels.length);
raster.setDataElements(0, 0, videoWidth, height, pixels);
return (Raster)raster;

}

public static void main(String args[]){
try{
System.out.println("Starting up");

CS4731 Project: Gesture Recognition 20

VideoCapture myVC = new VideoCapture(640, 480);
System.out.println("Constructor done");
BufferedImage myImage;
int numPics = 100;
for(int i=0; i<numPics; i++){

myImage = (BufferedImage) myVC.getNextImage();
System.out.println("Image Taken: " + i);
ImageIO.write(myImage, "jpg", new File("test/Test" + (i + 10*numPics) + ".jpg"));

}

System.out.println("Image Write Done");
} catch (Exception e){

System.out.println(e);
}

}
}

