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Introduction

There is a pressing need for efficient, and effective
algorithms to reduce, cluster and visualize the high
dimensionality gene-expression data gathered from
microarray analysis. Analyzing microarray data is
essential for gaining insight into subtle differences
in biological processes. For example, successfully
treating cancer patients heavily depends on targeting
the treatment to distinct types of tumors. By analyz-
ing the expression levels of genes in a variety of can-
cer patients we can hope to aggregate the multitude
of epigenetic changes caused by the disease into dis-
tinct classes, allowing for better diagnosis, and there-
fore better treatment.

Throughout the course of the term, the class
has examined the increasingly high-throughput “sys-
tems” integration of experimental and computa-
tional technologies1. Our project group has sought
to further understand the nature of leading-edge,
cross-disciplinary, and integrated problem structures
through a shared interest in large-scale experimen-
tal data, functional genomics, and microarray based
cancer research.

1See, for example, Leroy Hood, The Institute for Systems
Biology, 4225 Roosevelt Way, Seattle WA 98105.

Efficiently clustering and visualizing data as dis-
tinct classes is an interesting computational prob-
lem, under investigation in various academic fields
including machine learning, image analysis, data
mining and biology. In essence, we want to ex-
tract a small set of information which captures
common traits allowing for a compact and lu-
cid representations—through visual illustrations and
clustering—of a large amount of data. Depending
on the metric chosen, clustering can group genes
that serve similar biological functions, or experiment
samples that affect genes in similar ways. Groupings
discovered in this way can be compared to existing
knowledge of gene functions to provide a deeper un-
derstanding of the relationships between groups of
genes which may have been previously unknown or
considered to be unrelated, or can discover/confirm
new classes of samples which were previously un-
known.

A general goal of our group has been to develop an
understanding of large-scale, integrated technologies
working from a strongly computational perspective.
Golub and colleagues genomic and computational
approaches to cancer biology and cancer medicine
represent seminal efforts in cancer microarray study
design and analysis. Early microarray efforts, such

1
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as Eisen’s 1998 [1] study of genome-wide expres-
sion patterns, were more descriptive than analyt-
ical in nature, and have focused on cell cultures
rather than primary patient material. Golubs 1999
leukemia data set [4] is a first generation [7] bench-
mark [5] methodology for the molecular classifica-
tion of leukemia using more analytical and system-
atic techniques. Although this data set is regarded
as easy to classify [6], the study elucidated Princi-
pal Component Analysis (PCA) and more recently
Non-negative Matrix Factorization (NMF) [3] for the
analysis of microarray data.

Visualization of gene expression data is extremely
important to biologists. Clear illustrations of the re-
lationships between genes or samples reveal new and
often unanticipated relationships. For this reason,
many biologists have long favored simple cluster-
ing techniques such as hierarchical clustering which
force microarray data into a ‘clustered’ tree struc-
ture. This ‘forced’ structure allows biologists to vi-
sually identify the clusters or groups that interest
them, and to further examine those groups. Algo-
rithms such as PCA and NFA are not hierarchical,
and require the biologist to know therank or num-
ber of clusters they are looking fora priori. This
presents a major problem for most biologists, since
many researchers do not know the rank of the data
they are analyzing, or even if their data is clustered
at all.

For this reason, new visualization techniques are
needed to allow biologists to ‘see’ clusters with-
out imposing a forced hierarchical structure. One
promising algorithm to fit this purpose is Locally
Linear Embedding (LLE), an algorithm which al-
lows for a non-linear dimensionality reduction of
high-dimensional data sets. LLE permits a biologist
to collapse very high-dimensional space of clustered
points into 2 or 3 dimensions. Combined with clus-
tering algorithms like k-means, PCA and NMF, LLE
gives biologists a good guess for the number of clus-

ters that may be interesting, as well as providing an
alternative view of gene expression or sample rela-
tionships.

In this paper we combine the visualization abili-
ties of LLE with modern clustering algorithms like
NMF. We take two of Golub’s original data sets,
his human acute leukemias data and his childhood
brain tumors medulloblastomas data, and run LLE
to produce visual illustrations of the sample clus-
tering. By visually inspecting the data, we iden-
tify and enumerate interesting clusters. Thisrank
is then used to cluster the data using either the k-
means or NMF techniques. The visualization/cluster
technique is shown to produce accurate results in line
with Golub’s work.

As a final, more interesting experiment, we ap-
ply our novel technique to the yeast “stress” data
presented by Gasch and colleagues (Gasch 2000)
to further investigate our multi-model analytical ap-
proach in terms of a more complex multi-class clas-
sification problem. Gasch applied ten different stress
shocks, such as temperature shocks, hydrogen per-
oxide, amino acid starvation, etc. to 173 yeast sam-
ples. Our visualization/cluster technique is used to
group the shock sample into ‘cliques’ of shocks that
affect the yeast in similar ways. Below we outline
the different data sets in greater detail, describe the
algorithms, and perform our analysis.

Background

Data Sets

Todd Golub’s genomic and computational ap-
proaches to cancer biology and cancer medicine rep-
resent seminal efforts in cancer microarray study
design and analysis. Golub’s 1999 analysis of his
leukemia and medulloblastomas data sets using hi-
erarchical clustering (HC) and self-organizing map
(SOM) techniques is a first generation benchmark
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methodology for molecular classification. His con-
tinuing work in the problem led Golub to nonneg-
ative matrix factorization (NMF) decomposition al-
gorithms that can reduce the dimensionality of mi-
croarray data from hundreds of thousands of genes
to a handful of ‘metagenes’.

Luekemia Data

It is well know that acute leukemias may be clas-
sified as acute lymphoblastic leukemia (ALL) orig-
inating from lymphoid precursors or acute myeloid
leukemia (AML) originating from myeloid precur-
sors. ALL types can be further classified into T-
lineage and B-lineage subtypes. Ramaswamy and
Golub noted that “distinct cellular precursors likely
account for the robust expression signatures that dis-
tinguish these two cancers.” [4] This distinction is
critical for treatment planning but it is clinically diffi-
cult to determine. Golub applied a variety of cluster-
ing algorithms to systematically determine cell class
without subjective analysis.

Golubs initial (training) data set consisted of 38
bone marrow samples (27 ALL, 11 AML) obtained
from patients before treatment. Biotinylated RNA
prepared from patients bone marrow cells was hy-
bridized to the Affymetrix (high-density oligonu-
cleotide array) HU 6800 gene chip containing probes
for 6,817 genes. A test data set consisted of 6,817
genes across 34 patients (20 ALL, 14 AML) derived
from bone marrow as well as from peripheral blood
samples provided biological (vs. experimental) het-
erogeneity to the study.

Medulloblastomas (Brain Tumor) Data

Golub’s second data set analyses gene expression
data from childhood brain tumors known as medul-
loblastomas. While the pathogenesis of these brain
tumors is not well understood, it is widely accepted

that two know hisotogical subclasses exist: clas-
sic and desmoplastic, which are easily differentiated
under the microscope. The dimensionality of the
medulloblastomas data set is 6,817 genes across 34
samples containing 25 classic medulloblastomas and
9 desmoplastic clinical histological classes.

Yeast Shock Data

Gasch et al. describe yeast stress experiments based
upon whole-genome microarrays containing 6152
genes sampled over 173 experiments. These stresses
include a variety of temperature shocks, nutrient
depletions, chemical and radiation effects, osmotic
changes, and oxidizing and reducing treatments.
Several key results were obtained, including a de-
scription of global expression programs which re-
spond to a diverse set of stresses [2]. This “environ-
mental stress response” as it has been termed, define
two groups of genes which were consistently over-
and under- expressed across a majority of the stress
tests.

Current Clustering Techniques

Basic Clustering Techniques

Hierarchical Clustering (HC):HC is a frequently
used and commonly accepted approach in microar-
ray analysis. This method, however, imposes a strict
tree structure on the problem and is very sensitive to
the metric used to determine similarity. Furthermore
this technique often requires subjective human
analysis to identify clusters, which is problematic
for systematic analysis (although many biologists
prefer to visual ‘inspect’ their data).

Self-organizing Maps (SOM):SOMs have been
successfully used in many applications, but can
be unstable and are heavily dependent on initial
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conditions. For biologists, the difficulty of find-
ing appropriate initial conditions makes SOM an
unattractive technique.

Non-negative Matrix Factorization (NMF)

NMF techniques decompose gene data into a series
of ‘metagenes’. NMF techniques have been used to
reduce images of human faces into parts reminis-
cent of features such as eyes, nose, etc.; compara-
ble PCA analysis yields eigenfaces with no obvious
interpretation. NMF is more difficult algorithmically
due to its nonnegativtity requirement, but yields gene
components with easy biological interpretations and
more intuitive decompositions.

To describe NMF mathematically, considerN
genes inM samples in a matrixA. NMF’s goal is
to find a small number of metagenes, each defined as
a positive linear combination of theN genes. This
represents a factorization ofA∼WH, whereW is a
smallN×k matrix describingk metagenes, andH is
a smallk×M matrix describingk metasamples.

LLE/NMF Method

Our new technique combines the visualization power
of LLE and the robust clustering ability of NMF to
easily inspect clusters in a data set. LLE allows us
to first visually inspect the data, condensing the high
dimensional data into a 2-dimensional plane, in order
to estimate how many clusters are distinguishable.
We can then apply NMF to more rigorously analyze
how the data is clustered.

Locally Linear Embedding attempts to represent
significant relationships betweenN items in aD di-
mensional space using only two dimensions, allow-
ing the data to be plotted, and easily visualized.

LLE is comprised of 3 steps. First distances from
each point to itsK nearest neighbors are computed.

Then matrix of reconstruction weightsW minimiz-
ing the cost specified by this distance matrix is con-
structed. Lastly,W is used to reduce the problem
of finding a low dimensional embedding to a sparse
eigenvalue problem.

There are two tunable parameters for our algo-
rithm. LLE involves a parameter K, which con-
trols how many nearest neighbors the algorithm uses
when computing the reconstruction weights. K is
generally a measure of the non-linearity of the man-
ifold mapping the high-dimensional space to a low-
dimensional one. NMF takes as an argument a value
for the number of clusters it is trying to find.

In our analysis we visualize the Leukemia, Medul-
loblastomas, and Yeast data sets. The placement of
points on the image are calculated by LLE. The col-
ors represent distinct clusters found by NMF. Fur-
thermore lines are drawn between samples found to
be in the same cluster by NMF.

Analysis

Analysis of Leukemia Data

The results of our LLE/NMF combination technique
on the leukemia data set are very promising (see fig-
ure 1). As described above, human acute leukemia
can be classified into ALL and AML types, and ALL
can be further classified into T and B cell subtypes.
In the LLE embedding, we clearly see 3 distinct re-
gions in the 2-dimensional space, implying that the
embedding calculated by LLE is strong and the clus-
ters are well-formed. Presented with this informa-
tion, we ran the NMF algorithm with rank= 3 to
cluster the data into three unique metagene ‘types’.
The results from that clustering were then fed back
into LLE to produce the colored picture seen in fig-
ure 1.

From the coloring and the LLE embedding we can
clearly see how LLE and NMF agreed on the labels
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Figure 1: Analysis of using LLE/NMF on Golub’s leukemia data set. k=6, and the number of clusters = 3. Our
algorithm correctly visualizes the 3 distinct types of leukemia: ALL type T, ALL type B, and AML.

for most the sample points. The ALL type-T sub-
types are tightly clustered on the left side of the im-
age and are clearly labeled red (corresponding to the
first cluster identified by NMF). The AML and ALL
type-B subypes are displayed along the right side of
the image, with most AML samples gathered near
the top and most ALL type-T samples clustered on
the bottom. There is some overlap in the clustered
position in the middle of the group, where ALL sam-
ple 13 is clustered by the NMF algorithm with the
blue AML group. This, however, is completely con-

sistent with Golub’s results which note that a couple
samples appear to have been mislabeled/erroneous,
and are not correctly classified by any current tech-
nique.

Based on this dataset and analysis, the LLE/NMF
technique appears to be very effective. The nested
structure of the image clusters and the agreement be-
tween the LLE embedding and the NMF labeling is
quite promising. However, it should be noted that
this dataset has become a benchmark in the cancer
classification community [3] and is not consider par-
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Figure 2:Analysis of using LLE/NMF on Golub’s medulloblastomas data set. k=5, and the number of clusters = 3.
Our algorithm visualizes 3 distinct regions which are not neccesarily verified by known biological differences of the
samples. However the results of the algorithm strongly suggest 3 distinct classes of medulloblastomas.

ticularly difficult to analyze.

Analysis of Medulloblastomas Data

As compared with the clear differentiation offered by
the leukemia data, our results for the medulloblas-
tomas data set are not as clear. Although NMF and
LLE strongly agree on the existence of three distinct
clusters (see figure 2), this result is not verified by the
known biological differences of the samples. There
are two known subclasses: classic (C) and desmo-
plastic (D), which are clearly distinguished using a

microscope [3].
Golub mentions the difficulty of clustering this

data. Hierarchical clustering techniques are unable
to provide any clear class distinctions, and are un-
able to distinguish the D cell types. NMF is able
to find a distinct demoplastic cluster when the rank
= 5 (see the blue region in figure 3), where one of
the discovered classes is almost exclusively com-
prised of D cell types. However, we believe that due
to the strong cross-validation of the LLE and NMF
techniques that a more significant difference in gene
expression data is being represented by these three
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clusters. It is possible that there are three funda-
mentally different processes happening at a genetic
level which only produce two distinct detectable fea-
tures upon examination with a microscope. Without
a strong understanding of the biological processes at
work, it is difficult to further explore this hypothesis,
but the data presented here remains very compelling.

Analysis of Yeast Shock Data

As a final, more interesting test of our cluster-
ing/visualization techniques, we attempted to dis-
cover the presence of sample clusters in the yeast
shock data of Gasch et al [2]. As described ear-
lier, the Gasch group explored genomic expression
patterns in yeast responding to a wide range of en-
vironmental stress tests. The data set includes 6152
genes and 173 samples.

Initially, we ran the LLE algorithm over a wide
range of k values and visually inspected the re-
sults, looking for pronounced clusters and groupings.
While it remained difficult to see distinct, tight clus-
ters for all 173 samples, we could see groupings of
similar tests in different regions of the embedding.
After a number of trials, we choose a rank= 7 and
ran the NMF algorithm. The results can be seen is
figure 4.

We can see from this result how certain groups
of stress tests appear to gather together. For exam-
ple, the nitrogen depletion stress tests from a long
spike (colored black) down the lower left side of the
image. The longer tests protrude further than the
shorter ones (for example, the 5 day test is father be-
low the 3 day test, which is below the 1 day test, etc).
This provides very strong evidence for a biologically
significant clustering of these samples.

Other interesting features include the blue cluster
of YPD stationary phases. The blue cluster almost
exclusively captures all the stationary phase samples,
and within the cluster, samples are positioned ac-

cording to the length of the experiment (like with the
nitrogen tests).

Heat shock treatments of different lengths, tem-
peratures and types appear to cluster significantly at
near the top of the LLE embedding. The NMF al-
gorithm with rank= 7 does not appear to uniquely
classify them as well an the nitrogen and stationary
phase tests, and instead groups the samples with a
variety of other tests. This is likely a function of the
large number of sample points used in the LLE em-
bedding: with so many sample points available, it is
difficult to visualize and choose an accurate rank for
the NMF clustering.

Biologically, our results offer interesting obser-
vations of the Gasch environmental stress data set.
It is quite possible to infer that nitrogen depletion,
stationary phase and heat shock stresses affect the
yeast cells in a way fundamentally different from
the majority of the other stress tests. This obser-
vation is partially supported by the original Gasch
research [2] which qualitatively comments on the
gene expression level similarlity of these tests com-
pared with (and unique from) the other stresses. By
this hypothesis, the large green and yellow grouping
of many different tests in the lower right spike of the
image represents a group of tests which respond in
similar ways to most of the stresses experienced.

Discussion and Future Directions

LLE/NMF is a valuable tool for biologists to visu-
ally inspect clusters in gene-expression data because
it combines the simplicity of a rank-independent vi-
sualization technique (LLE) with a robust, mathe-
matically rigorous clustering algorithm (NMF). Our
implementation has been proven accurate analyzing
simple data such as the leukemia data set, and has
offered an interesting perspective on more difficult
clustering problems as well, such as the medulloblas-
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Figure 3:Analysis of using LLE/NMF on Golub’s medulloblastomas data set. k=5, and the number of clusters = 5.
Our algorithm visualizes 5 distinct regions. The desmoplastic class is properly identified by NMF however LLE still
suggests 3 distinct classes of medulloblastomas.

tomas and yeast data sets.

There are two directions in which we would like
to take this project in the future. The first is an au-
tomatic estimation ofk for LLE. Although this pa-
rameter does not have a large effect on output (com-
pared to NMF for example), picking ak value which
is either much bigger or smaller then it should be
can yield inaccurate results. We have started do-
ing some simple analysis of the strength of the LLE
embedding by looking at the eigenvalues found by
the eigensolver in the last step of LLE. However,

this process could be automated and optimized, to
remove the initial step of tuningk to fit the non-
linearity of the data. Secondly, we believe that this
technique could be largely improved by adding a
level of interactivity in the visualization/clustering
process. When analyzing a large number of samples,
it is important to have an interface that can scale the
data representation appropriately. The ability to ex-
clude certain samples from the visualization, focus
on specific clusters, etc. would be a valuable fea-
ture, which would allow biologists to more easily
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explore the data. Furthermore, NMF could be run in-
teractively: a user could select an interesting region
of the LLE embedding and run NMF to cluster the
points found exclusively in that region. This level of
interactivity would greatly improve user’s ability to
gain insight into inherent relationships in the data by
further increasing the cross-validation of NMF and
LLE, and simplifying the task of creating meaning-
ful, informative visualizations.
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Figure 4: Analysis of using LLE/NMF on the yeast shock data set. k=30, and the number of clusters = 7. Our
algorithm clearly shows certain shocks affecting the gene expression levels in similar ways.
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A Code Listing

A.1 clusterAndPlot.m

% Cluster and Plot
% Blake Shaw & Hart Lambur
% Columbia University
%
% This script runs the nmf/lle combination algorithm on
% a variety of different datasets

%set this variable to the path which contains the data folders
%leukemia_data, medulloblastomas_data, shock_data
dataFolder = ’/Users/blake/Desktop/metagenes/’;

%1 -- leukemia data set
%2 -- brain tumor data
%2 -- yeast data
demo = 2;

if demo==1
% params
numClusters = 3;
K = 6;

% get data
disp(sprintf(’Loading Data’));
load([dataFolder ’leukemia_data/ALL_AML_data.txt’]);
AMLLabels = readtextfile([dataFolder...

’leukemia_data/ALL_AML_samples.txt’]);

data = ALL_AML_data;
labels = AMLLabels;

elseif demo==2
% params
numClusters = 3;
K = 5;

% get data
disp(sprintf(’Loading Data’));
load([dataFolder ’medulloblastomas_data/Medulloblastoma_data.txt’]);
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med_labels = readtextfile([dataFolder...
’medulloblastomas_data/Medulloblastomas_samples.txt’]);

data = Medulloblastoma_data;
labels = med_labels;

elseif demo==3
% params
numClusters = 7;
K = 30;

% get data
disp(sprintf(’Loading Data’));
load([dataFolder ’shock_data/gasch_data.txt’]);
gaschLabels = readtextfile([dataFolder...

’shock_data/gasch_samples.txt’]);

data = gasch_data + 10;
data = data(:, :);
labels = gaschLabels;

end

% print info
[D,N] = size(data);
disp(sprintf(’Dimensions: %d, Number of Items: %d’, D, N));

% nmf
disp(sprintf(’Running NMF -- Finding %d clusters’, numClusters));
[w, h] = nmf(data, numClusters, 0);
[num, indices] = max(h);
clusters = indices’;

% lle
disp(sprintf(’Running LLE -- K = %d’, K));
[Y, nearestNeighbors] = lle(data, labels, K, 2, 0, 1);

% nmf
disp(sprintf(’Plotting’));

figure(1);
clf;

for i=1:N
for j=1:N
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if i<j
if clusters(i) == clusters (j)

line( [Y(1, i), Y(1, j)], [ Y(2, i), Y(2, j)],...
’Color’, getColor(clusters(i)));

end
end

end
end

for i=1:N
text(Y(1, i), Y(2, i), labels(i, :), ’EdgeColor’,...

getColor(clusters(i)), ’BackgroundColor’, ’white’ );
end

axis([-1, 1, -1, 1]);

A.2 lle.m

% Locally Linear Embedding
% Blake Shaw & Hart Lambur
% Columbia University
%
% [Y, nearestNeighbors, eigStrength] = lle(X, labels, K,dOutput, plotType,...
% distanceType)
%
% X = D x N matrix where N is the number of points in a D dimensional space
% K = number of neighbors
% distanceType = 1 -- euclidean distance, 2 -- KL Divergence
% labels = labels for points
% dOutput = number of dimensions for output Y
% Y = points in a dOutput dimensional space
% nearestNeighbors = matrix of nearest neighbors for each item
% dimensions

function [Y, nearestNeighbors, eigStrength] = lle(X, labels, K,dOutput,...
plotType, distanceType)

[D,N] = size(X);
disp(sprintf(’LLE for %d points in %d dimensions’,N,D));

disp(sprintf(’Calculating Distance Matrix’));
distance = ones(N, N);

if distanceType == 1
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disp(sprintf(’Using Euclidean Distance’));
for i=1:N

%disp(sprintf(’%d out of %d’, i, N));
for j=1:N

dist = 0;
for k=1:D

if(i ˜= j)
%euclidean distance
A = X(k, i);
B = X(k, j);
dist = dist + (A - B)ˆ2;

end
end
distance(i, j) = distˆ0.5;

end
end

elseif distanceType == 2
disp(sprintf(’Using KL Divergence’));
for i=1:N

for j=1:N
dist = 0;
for k=1:D

if(i ˜= j)
%kl divergence
P = X(k, i);
Q = X(k, j);
if (P/Q)==0

disp(sprintf(’Error for KL divergence: P=%f, Q=%f’, P, Q));
end
dist = dist + P * log(P / Q);

end
end
distance(i, j) = dist;

end
end

end

disp(sprintf(’Finding %d nearest neighbors’, K));
[sortedDistances,indexes] = sort(distance);

% disp(sprintf(’Printing Neighbors to file...’));
% fid = fopen(’UserDistances.txt’, ’w’);
% for printUser=1:N
% fprintf(fid, ’Neighbors for %s\n’, labels(printUser, :));
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% for(i=1:N)
% fprintf(fid,’ --->%s -- %6f\n’, labels(indexes(i, printUser), :),...
% distance(printUser, indexes(i, printUser)));
% end
% end
%fclose(fid);

nearestNeighbors = indexes(2:(1+K),:); %index 1 should be the point itself

disp(sprintf(’Solving for weights’));

z = zeros(D, K);
W = zeros(K,N);
for i=1:N

%subtract Xi from every column of Z
for j=1:K

z(:, j) = X(:,nearestNeighbors(j,i)) - X(:,i);
end

C = z’*z;
C = C + eye(K,K); %help numerical instabilities
W(:,i) = inv(C) * ones(K, 1);
W(:,i) = W(:,i)/sum(W(:,i));

end

disp(sprintf(’Computing embedding coordinates using weights’));

M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N); %sparse matrix
for i=1:N

w = W(:,i);
j = nearestNeighbors(:,i);
M(i,j) = M(i,j) - w’;
M(j,i) = M(j,i) - w;
M(j,j) = M(j,j) + w*w’;

end

%M2 = ((eye(K, N) - W)’ * (eye(K, N) - W)) % why doesnt this work?

%options.disp = 0;
%[Y,eigenvals] = eigs(M,N-1);
%eigenvals(N-2-dOutput:N-2, :);
numEigens = dOutput + 4;
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[Y, eigenvals] = jdqr(M, numEigens, 0);
eigValues = diag(eigenvals);

disp(sprintf(’# of eigenvalues: %d’, length(eigValues)));
eigStrength = eigValues(dOutput+1+1) - eigValues(dOutput+1);
%eigStrength = 0;
Y = Y(:,2:dOutput+1)’;

if plotType == 1
disp(sprintf(’Plotting’));
figure(1);
clf;
% plot(Y(1, :), Y(2, :), ’r+’);
% axis([-1, 1, -1, 1]);

if dOutput == 3
for i=1:N

for j=1:min(5, K)
line( [Y(1, i), Y(1, nearestNeighbors(j, i))],...

[ Y(2, i), Y(2, nearestNeighbors(j, i))], [ Y(3, i), Y(3, nearestNeighbors(j, i))] );
end

end

for i=1:N
text(Y(1, i), Y(2, i), Y(3, i), labels(i, :),...

’EdgeColor’, ’blue’, ’BackgroundColor’, ’white’ );
end
axis([-1, 1, -1, 1, -1, 1]);

else
for i=1:N

for j=1:min(5, K)
line( [Y(1, i), Y(1, nearestNeighbors(j, i))],...

[ Y(2, i), Y(2, nearestNeighbors(j, i))]);
end

end

for i=1:N
text(Y(1, i), Y(2, i), labels(i, :), ’EdgeColor’,...

’blue’, ’BackgroundColor’, ’white’ );
end
axis([-1, 1, -1, 1]);

end
title(’Map’);

figure(2);
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clf;
bar(eigValues(2:dOutput+1+2));
axis([0, length(eigValues) + 1, 0, max(eigValues) + 0.1]);
title(’Eigenvalues’);

elseif plotType == 2
disp(sprintf(’Plotting’));
figure(1);
clf;
plot(Y(1, :), Y(2, :), ’r+’);
axis([-1, 1, -1, 1]);

end

A.3 nmf.m

function [w,h]=nmf(v,r,verbose)
%
% Jean-Philippe Brunet
% Cancer Genomics
% The Broad Institute
% brunet@broad.mit.edu
%
% Edited by:
% Blake Shaw & Hart Lambur
% Columbia University
%
% This software and its documentation are copyright 2004 by the
% Broad Institute/Massachusetts Institute of Technology. All rights are reserved.
% This software is supplied without any warranty or guaranteed support whatsoever.
% Neither the Broad Institute nor MIT can not be responsible for its use, misuse,
% or functionality.
%
% NMF divergence update equations :
% Lee, D..D., and Seung, H.S., (2001), ’Algorithms for Non-negative Matrix
% Factorization’, Adv. Neural Info. Proc. Syst. 13, 556-562.
%
% v (n,m) : N (genes) x M (samples) original matrix
% Numerical data only.
% Must be non negative.
% Not all entries in a row can be 0. If so, add a small constant to the
% matrix, eg.v+0.01*min(min(v)),and restart.
%
% r : number of desired factors (rank of the factorization)
%
% verbose : prints iteration count and changes in connectivity matrix elements
% unless verbose is 0
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%
% Note : NMF iterations stop when connectivity matrix has not changed
% for 10*stopconv interations. This is experimental and can be
% adjusted.
%
% w : N x r NMF factor
% h : r x M NMF factor

% test for negative values in v
if min(min(v)) < 0

error(’matrix entries can not be negative’);
return

end
if min(sum(v,2)) == 0

error(’not all entries in a row can be zero’);
return

end

[n,m]=size(v);
stopconv=40; % stopping criterion (can be adjusted)
niter = 2000; % maximum number of iterations (can be adjusted)

cons=zeros(m,m);
consold=cons;
inc=0;
j=0;

%
% initialize random w and h
%
w=rand(n,r);
h=rand(r,m);

for i=1:niter

% divergence-reducing NMF iterations

x1=repmat(sum(w,1)’,1,m);
h=h.*(w’*(v./(w*h)))./x1;
x2=repmat(sum(h,2)’,n,1);
w=w.*((v./(w*h))*h’)./x2;
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% test convergence every 10 iterations

if(mod(i,10)==0)
j=j+1;

% adjust small values to avoid undeflow
h=max(h,eps);w=max(w,eps);

% construct connectivity matrix
[y,index]=max(h,[],1); %find largest factor
mat1=repmat(index,m,1); % spread index down
mat2=repmat(index’,1,m); % spread index right
cons=mat1==mat2;

if(sum(sum(cons˜=consold))==0) % connectivity matrix has not changed
inc=inc+1; %accumulate count

else
inc=0; % else restart count

end

if verbose % prints number of changing elements
fprintf(’\t%d\t%d\t%d\n’,i,inc,sum(sum(cons˜=consold))),

end

if(inc>stopconv)
break, % assume convergence is connectivity stops changing

end

consold=cons;

end
end

A.4 readtextfile.m

function tab=readtextfile(filename)
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% Read a text file into a matrix with one row per input line
% and with a fixed number of columns, set by the longest line.
% Each string is padded with NUL (ASCII 0) characters
%
% open the file for reading
ip = fopen(filename,’rt’); % ’rt’ means read text
if (ip < 0)

error(’could not open file’);% just abort if error
end;
% find length of longest line
max=0; % record length of longest string
cnt=0; % record number of strings
s = fgetl(ip); % get a line
while (ischar(s)) % while not end of file

cnt = cnt+1;
if (length(s) > max) % keep record of longest

max = length(s);
end;
s = fgetl(ip); % get next line

end;
% rewind the file to the beginning
frewind(ip);
% create an empty matrix of appropriate size
tab=char(zeros(cnt,max));% fill with ASCII zeros
% load the strings for real
cnt=0;
s = fgetl(ip);
while (ischar(s))

cnt = cnt+1;
tab(cnt,1:length(s)) = s;% slot into table
s = fgetl(ip);

end;
% close the file and return
fclose(ip);
return;

A.5 getcolor.m

function [pColor] = getColor(i)
if i==1

pColor = [1, 0, 0];
elseif i==2

pColor = [0, 1, 0];
elseif i==3

pColor = [0, 0, 1];
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elseif i==4
pColor = [0, 0, 0];

elseif i==5
pColor = [0, 1, 1];

elseif i==6
pColor = [1, 1, 0];

elseif i==7
pColor = [1, 0, 1];

elseif i==8
pColor = [0.5, 0, 0];

elseif i==9
pColor = [0, 0.5, 0];

elseif i==10
pColor = [0, 0, 0.5];

else
pColor = [1, 1, 1];

end


