
Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given !xi ∈ "D for i = 1 . . . N , can we find !yi ∈ "d for
i = 1 . . . N such that d # D?

Standard PCA or Kernel PCA (Shoelkopf)
- Get matrix A, affinities between pairs Aij = k(xi, xj)
- Get SVD of A and view top projections

Semidefinite Embedding (SDE)
(Weinberger, Saul)
- Get matrix A, compute k-nearest neighbor graph C
- Find K using a Semidefinite Program (SDP) which
“pulls apart” A while preserving distances in C
- Get SVD of K and view top projections

MVE is similar to Semidefinite Embedding (SDE)
which uses a Semidefinite Program (SDP) to “pull
apart” the data while preserving local distances, and
then an Singular Value Decomposition (SVD) to view
the low dimensional embedding.

Semidefinite Embedding (SDE) pulls apart the swiss
roll producing a 2d embedding. Minimum Volume Em-
bedding (MVE) behaves similarly.

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






MVE directly optimizes the eigenspectrum of the data
to preserve as much of its energy as possible within the
few dimensions available to the embedding. Simulta-
neously, remaining eigenspectrum energy is minimized
in directions orthogonal to the embedding thereby
keeping data in a so-called minimum volume manifold.

Minimum Volume Embedding Blake Shaw and Tony Jebara
Columbia University

The Problem

Define the function:

g(K,!v1, . . . ,!vN ) = tr

[
K

(
−

d∑

i=1

!vi!v
T
i +

N∑

i=d+1

!vi!v
T
i

)]
.

Thus, f(K) is the minimization of g(K,!v1, . . . ,!vN )
over eigenvectors. Assume we have a current setting
of K denoted Kt and a current setting of the eigen-
vectors !vt

1, . . .!v
t
N . In general, we must have:

f(Kt) ≤ g(Kt,!vt
1, . . . ,!v

t
N )

After Step 4 of the MVE algorithm we obtain:

f(Kt) = g(Kt,!vt+1
1 , . . . ,!vt+1

N )

After Step 6 of the MVE algorithm, SDP ensures that:

g(Kt+1,!vt+1
1 , . . .!vt+1

N ) ≤ g(Kt,!vt+1
1 , . . .!vt+1

N ).

Since f(K) is a minimization of g(K,!v1, . . . ,!vN ),

f(Kt+1) ≤ g(Kt+1,!vt+1
1 , . . . ,!vt+1

N )
≤ g(Kt,!vt+1

1 , . . . ,!vt+1
N )

≤ f(Kt)

showing that f(Kt) ≥ f(Kt+1) after each loop of the
MVE algorithm and f(K) decreases monotonically.

It is interesting to note that spectral cost functions
of the matrix K of the form

∑
i αiλi are convex if

αi ≤ αi+1 and the eigenvalues of K are arranged in
decreasing order λi ≥ λi+1. Since MVE’s cost func-
tion has αi ≥ αi+1, it is concave. In practice, the MVE
algorithm does not seem to have any significant local
minima since it converges reliably to the same solution
despite variations in initialization, as shown in Figure
2. In addition, the solution it obtains is consistently
superior to ones found by SDE and kernel PCA. An-
other interesting property of MVE is that the selection
of d does not need to be precise. For instance, setting
d = 2 and computing a 3D visualization in Step 8 of
the algorithm will still produce a better visualization
than using traditional SDE or kernel PCA techniques.
These empirical advantages are presented in further
detail in the next section.

5 EXPERIMENTS

We present a variety of experiments using both syn-
thetic and real-world data to highlight the perfor-
mance of MVE, specifically in comparison to SDE and
KPCA.

5.1 SYNTHETIC DATA

In Figure 3, we see MVE appropriately embedding the
simple data set consisting of a hub and spokes. We

! " #! #" $! $" %! %" &! &" "!
!"!

!&!

!%!

!$!

!#!

!

#!

'()*!!*+,-,*./01*!!*23#

Figure 2: The results of using 10 random initializations
for MVE, instead of initializing with the KPCA or
SDE solution. We see that for d = 1, MVE converges
each time to the same solution, showing that MVE
is robust to local minima. We also note that seeding
MVE with KPCA reduces the number of iterations by
5 fold in practice.

!

"

#

$

!

"

#

$

%

&

!

!!

%

!

!'

!!

!&

%

&

!

'

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

+,-.-/01

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

%*

&*

234

Figure 3: MVE correctly embeds the synthetic hub
and spokes data in 2 dimensions (left). The eigen-
spectrum (right) of the embedding generated by MVE
shows that the embedding is simply 2 dimensional
and that MVE does not puff out the data into an N -
dimensional space like SDE.

saw in Figure 1 that SDE puffs out this dataset into
an N -dimensional hub. Meanwhile, MVE recovers the
correct minimum volume two-dimensional embedding.
Although this example is very manufactured, it clearly
highlights a deficiency in SDE, and one can imagine
stringing together many of these hubs in a variety of
different ways to create hierarchical hub-like structures
that could cause SDE to use many more dimensions
than necessary.

Figure 4 shows a synthetic dataset consisting of 50
points sampled from a 2 dimensional spiral, where each
of the 50 points is connected to its 3 nearest neighbors.
As expected, both MVE and SDE find nearly identical
embeddings using the same parameters (k = 3) for
both, and d = 1 for MVE. Both algorithms successfully
reveal the underlying 1-dimensional structure in the
data.

Define the function:

g(K,!v1, . . . ,!vN ) = tr

[
K

(
−

d∑

i=1

!vi!v
T
i +

N∑

i=d+1

!vi!v
T
i

)]
.

Thus, f(K) is the minimization of g(K,!v1, . . . ,!vN )
over eigenvectors. Assume we have a current setting
of K denoted Kt and a current setting of the eigen-
vectors !vt

1, . . .!v
t
N . In general, we must have:

f(Kt) ≤ g(Kt,!vt
1, . . . ,!v

t
N )

After Step 4 of the MVE algorithm we obtain:

f(Kt) = g(Kt,!vt+1
1 , . . . ,!vt+1

N )

After Step 6 of the MVE algorithm, SDP ensures that:

g(Kt+1,!vt+1
1 , . . .!vt+1

N ) ≤ g(Kt,!vt+1
1 , . . .!vt+1

N ).

Since f(K) is a minimization of g(K,!v1, . . . ,!vN ),

f(Kt+1) ≤ g(Kt+1,!vt+1
1 , . . . ,!vt+1

N )
≤ g(Kt,!vt+1

1 , . . . ,!vt+1
N )

≤ f(Kt)

showing that f(Kt) ≥ f(Kt+1) after each loop of the
MVE algorithm and f(K) decreases monotonically.

It is interesting to note that spectral cost functions
of the matrix K of the form

∑
i αiλi are convex if

αi ≤ αi+1 and the eigenvalues of K are arranged in
decreasing order λi ≥ λi+1. Since MVE’s cost func-
tion has αi ≥ αi+1, it is concave. In practice, the MVE
algorithm does not seem to have any significant local
minima since it converges reliably to the same solution
despite variations in initialization, as shown in Figure
2. In addition, the solution it obtains is consistently
superior to ones found by SDE and kernel PCA. An-
other interesting property of MVE is that the selection
of d does not need to be precise. For instance, setting
d = 2 and computing a 3D visualization in Step 8 of
the algorithm will still produce a better visualization
than using traditional SDE or kernel PCA techniques.
These empirical advantages are presented in further
detail in the next section.

5 EXPERIMENTS

We present a variety of experiments using both syn-
thetic and real-world data to highlight the perfor-
mance of MVE, specifically in comparison to SDE and
KPCA.

5.1 SYNTHETIC DATA

In Figure 3, we see MVE appropriately embedding the
simple data set consisting of a hub and spokes. We

! " #! #" $! $" %! %" &! &" "!
!"!

!&!

!%!

!$!

!#!

!

#!

'()*!!*+,-,*./01*!!*23#

Figure 2: The results of using 10 random initializations
for MVE, instead of initializing with the KPCA or
SDE solution. We see that for d = 1, MVE converges
each time to the same solution, showing that MVE
is robust to local minima. We also note that seeding
MVE with KPCA reduces the number of iterations by
5 fold in practice.

!

"

#

$

!

"

#

$

%

&

!

!!

%

!

!'

!!

!&

%

&

!

'

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

+,-.-/01

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

%*

&*

234

Figure 3: MVE correctly embeds the synthetic hub
and spokes data in 2 dimensions (left). The eigen-
spectrum (right) of the embedding generated by MVE
shows that the embedding is simply 2 dimensional
and that MVE does not puff out the data into an N -
dimensional space like SDE.

saw in Figure 1 that SDE puffs out this dataset into
an N -dimensional hub. Meanwhile, MVE recovers the
correct minimum volume two-dimensional embedding.
Although this example is very manufactured, it clearly
highlights a deficiency in SDE, and one can imagine
stringing together many of these hubs in a variety of
different ways to create hierarchical hub-like structures
that could cause SDE to use many more dimensions
than necessary.

Figure 4 shows a synthetic dataset consisting of 50
points sampled from a 2 dimensional spiral, where each
of the 50 points is connected to its 3 nearest neighbors.
As expected, both MVE and SDE find nearly identical
embeddings using the same parameters (k = 3) for
both, and d = 1 for MVE. Both algorithms successfully
reveal the underlying 1-dimensional structure in the
data.

Original

clear from a variety of datasets. In Figure 1, we see
a synthetic data set consisting of a hub and spokes;
the spokes are bent down from the hub. This sim-
ple dataset nicely illustrates an inherent limitation in
SDE. The data exists in 3 dimensions, and it is clear
that by simply unbending the spokes, we could rep-
resent this structure in 2D, preserving local relation-
ships. However, because SDE is trying to maximize
tr(K), it is in essence trying to pull the data apart in
every dimension. This maximizes the volume of the
spokes into an N-dimensional spherical cloud. Figure
1 shows the resulting embedding and the eigenvalues
before and after SDE which was actually detrimental
to the original PCA spectrum in the top of the figure.

!

"

#

$

!

"

#

$

%

&

!

!&
%

&
!

!!

%

!

!!

!&

%

&

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*
+,-.-/01

! " # $ % & ' ( )
!%

*

%

!*

!%

234

Figure 1: Top, the original data and its eigenspec-
trum (using PCA). Bottom, the unfolded data using
SDE and its eigenspectrum. The embedding (left)
generated for a synthetic hub and spokes dataset and
then processed by Semidefinite Embedding. SDE pulls
apart the data into an N -dimensional space, which is
evident from the overpopulated eigenspectrum (right).

The original motivation for developing MVE was to
visualize social networks which have a connectivity
structure similar to that of this toy problem. How-
ever, as we experimented with more datasets, we saw
that by using a more sophisticated objective function
not only can we avoid the limitations of SDE as shown
above, but we can consistently capture more of the
variance of the data in the top eigenvectors for a va-
riety of different kinds of datasets. This allows MVE
to more accurately visualize the data in only a few
dimensions.

4 THE MINIMUM VOLUME
EMBEDDING ALGORITHM

To formulate MVE, we start from the SDE algorithm
and make some important changes to its cost func-
tion. Recall that SDE maximizes the trace of a ma-
trix K subject to positive definiteness, centering and
distance-preserving constraints. It is a constrained

minimization of a linear cost function of K:

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

(where λi are the eigenvalues of K) subject to the con-
straint that K is in K. Here, we use K to denote the
convex set of matrices which satisfy the properties of
SDE and define it as:

K =






∀K ∈ $N×N

∣∣∣∣∣∣∣∣∣∣

K % 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






While SDE sometimes works reasonably well, the in-
tuition of pulling points apart (maximizing the trace
of K) and unfolding by maximizing variance can cre-
ate problems and use more dimensions than are nec-
essary. Instead, we would like to pull points apart in
the dimensions that we are interested in keeping for
the embedding but reduce the variance in dimensions
that will be removed. Thus, we would like to grow the
top few eigenvalues of K while shrinking the remaining
ones (to avoid the manifold puffing out in directions
perpendicular to its surface). Ideally, if we knew the
intrinsic dimensionality d of the manifold, MVE would
therefore minimize the following cost function over the
eigenvalues:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

where λ are the eigenvalues of K in sorted order,
λi ≥ λi+1. We typically do not know d but treat it
as a user-specified parameter for now. Typically, for
visualization d is 2 or 3. Furthermore, our experiments
show that using a value of d that is too small or too big
will not significantly change results. Clearly, if we set
d = N , this cost function f becomes the same as the
cost function fSDE used in SDE. We cannot directly
minimize Equation 1, so we derive a variational upper
bound on it, and iteratively minimize that bound.

Consider rewriting Equation 1 in the following way
which makes the relationship between K, its eigenval-
ues λi and its eigenvectors "vi more explicit:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi

s.t. K"vi = λi"vi, "vT
i "vj = δij , λi ≥ λi+1, ∀i, j. (2)

We next manipulate the cost function algebraically
(maintaining the above additional constraints) as fol-

clear from a variety of datasets. In Figure 1, we see
a synthetic data set consisting of a hub and spokes;
the spokes are bent down from the hub. This sim-
ple dataset nicely illustrates an inherent limitation in
SDE. The data exists in 3 dimensions, and it is clear
that by simply unbending the spokes, we could rep-
resent this structure in 2D, preserving local relation-
ships. However, because SDE is trying to maximize
tr(K), it is in essence trying to pull the data apart in
every dimension. This maximizes the volume of the
spokes into an N-dimensional spherical cloud. Figure
1 shows the resulting embedding and the eigenvalues
before and after SDE which was actually detrimental
to the original PCA spectrum in the top of the figure.

!

"

#

$

!

"

#

$

%

&

!

!&
%

&
!

!!

%

!

!!

!&

%

&

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*
+,-.-/01

! " # $ % & ' ( )
!%

*

%

!*

!%

234

Figure 1: Top, the original data and its eigenspec-
trum (using PCA). Bottom, the unfolded data using
SDE and its eigenspectrum. The embedding (left)
generated for a synthetic hub and spokes dataset and
then processed by Semidefinite Embedding. SDE pulls
apart the data into an N -dimensional space, which is
evident from the overpopulated eigenspectrum (right).

The original motivation for developing MVE was to
visualize social networks which have a connectivity
structure similar to that of this toy problem. How-
ever, as we experimented with more datasets, we saw
that by using a more sophisticated objective function
not only can we avoid the limitations of SDE as shown
above, but we can consistently capture more of the
variance of the data in the top eigenvectors for a va-
riety of different kinds of datasets. This allows MVE
to more accurately visualize the data in only a few
dimensions.

4 THE MINIMUM VOLUME
EMBEDDING ALGORITHM

To formulate MVE, we start from the SDE algorithm
and make some important changes to its cost func-
tion. Recall that SDE maximizes the trace of a ma-
trix K subject to positive definiteness, centering and
distance-preserving constraints. It is a constrained

minimization of a linear cost function of K:

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

(where λi are the eigenvalues of K) subject to the con-
straint that K is in K. Here, we use K to denote the
convex set of matrices which satisfy the properties of
SDE and define it as:

K =






∀K ∈ $N×N

∣∣∣∣∣∣∣∣∣∣

K % 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






While SDE sometimes works reasonably well, the in-
tuition of pulling points apart (maximizing the trace
of K) and unfolding by maximizing variance can cre-
ate problems and use more dimensions than are nec-
essary. Instead, we would like to pull points apart in
the dimensions that we are interested in keeping for
the embedding but reduce the variance in dimensions
that will be removed. Thus, we would like to grow the
top few eigenvalues of K while shrinking the remaining
ones (to avoid the manifold puffing out in directions
perpendicular to its surface). Ideally, if we knew the
intrinsic dimensionality d of the manifold, MVE would
therefore minimize the following cost function over the
eigenvalues:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

where λ are the eigenvalues of K in sorted order,
λi ≥ λi+1. We typically do not know d but treat it
as a user-specified parameter for now. Typically, for
visualization d is 2 or 3. Furthermore, our experiments
show that using a value of d that is too small or too big
will not significantly change results. Clearly, if we set
d = N , this cost function f becomes the same as the
cost function fSDE used in SDE. We cannot directly
minimize Equation 1, so we derive a variational upper
bound on it, and iteratively minimize that bound.

Consider rewriting Equation 1 in the following way
which makes the relationship between K, its eigenval-
ues λi and its eigenvectors "vi more explicit:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi

s.t. K"vi = λi"vi, "vT
i "vj = δij , λi ≥ λi+1, ∀i, j. (2)

We next manipulate the cost function algebraically
(maintaining the above additional constraints) as fol-

SDE

Define the function:

g(K,!v1, . . . ,!vN ) = tr

[
K

(
−

d∑

i=1

!vi!v
T
i +

N∑

i=d+1

!vi!v
T
i

)]
.

Thus, f(K) is the minimization of g(K,!v1, . . . ,!vN )
over eigenvectors. Assume we have a current setting
of K denoted Kt and a current setting of the eigen-
vectors !vt

1, . . .!v
t
N . In general, we must have:

f(Kt) ≤ g(Kt,!vt
1, . . . ,!v

t
N )

After Step 4 of the MVE algorithm we obtain:

f(Kt) = g(Kt,!vt+1
1 , . . . ,!vt+1

N )

After Step 6 of the MVE algorithm, SDP ensures that:

g(Kt+1,!vt+1
1 , . . .!vt+1

N ) ≤ g(Kt,!vt+1
1 , . . .!vt+1

N ).

Since f(K) is a minimization of g(K,!v1, . . . ,!vN ),

f(Kt+1) ≤ g(Kt+1,!vt+1
1 , . . . ,!vt+1

N )
≤ g(Kt,!vt+1

1 , . . . ,!vt+1
N )

≤ f(Kt)

showing that f(Kt) ≥ f(Kt+1) after each loop of the
MVE algorithm and f(K) decreases monotonically.

It is interesting to note that spectral cost functions
of the matrix K of the form

∑
i αiλi are convex if

αi ≤ αi+1 and the eigenvalues of K are arranged in
decreasing order λi ≥ λi+1. Since MVE’s cost func-
tion has αi ≥ αi+1, it is concave. In practice, the MVE
algorithm does not seem to have any significant local
minima since it converges reliably to the same solution
despite variations in initialization, as shown in Figure
2. In addition, the solution it obtains is consistently
superior to ones found by SDE and kernel PCA. An-
other interesting property of MVE is that the selection
of d does not need to be precise. For instance, setting
d = 2 and computing a 3D visualization in Step 8 of
the algorithm will still produce a better visualization
than using traditional SDE or kernel PCA techniques.
These empirical advantages are presented in further
detail in the next section.

5 EXPERIMENTS

We present a variety of experiments using both syn-
thetic and real-world data to highlight the perfor-
mance of MVE, specifically in comparison to SDE and
KPCA.

5.1 SYNTHETIC DATA

In Figure 3, we see MVE appropriately embedding the
simple data set consisting of a hub and spokes. We

! " #! #" $! $" %! %" &! &" "!
!"!

!&!

!%!

!$!

!#!

!

#!

'()*!!*+,-,*./01*!!*23#

Figure 2: The results of using 10 random initializations
for MVE, instead of initializing with the KPCA or
SDE solution. We see that for d = 1, MVE converges
each time to the same solution, showing that MVE
is robust to local minima. We also note that seeding
MVE with KPCA reduces the number of iterations by
5 fold in practice.

!

"

#

$

!

"

#

$

%

&

!

!!

%

!

!'

!!

!&

%

&

!

'

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

+,-.-/01

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

%*

&*

234

Figure 3: MVE correctly embeds the synthetic hub
and spokes data in 2 dimensions (left). The eigen-
spectrum (right) of the embedding generated by MVE
shows that the embedding is simply 2 dimensional
and that MVE does not puff out the data into an N -
dimensional space like SDE.

saw in Figure 1 that SDE puffs out this dataset into
an N -dimensional hub. Meanwhile, MVE recovers the
correct minimum volume two-dimensional embedding.
Although this example is very manufactured, it clearly
highlights a deficiency in SDE, and one can imagine
stringing together many of these hubs in a variety of
different ways to create hierarchical hub-like structures
that could cause SDE to use many more dimensions
than necessary.

Figure 4 shows a synthetic dataset consisting of 50
points sampled from a 2 dimensional spiral, where each
of the 50 points is connected to its 3 nearest neighbors.
As expected, both MVE and SDE find nearly identical
embeddings using the same parameters (k = 3) for
both, and d = 1 for MVE. Both algorithms successfully
reveal the underlying 1-dimensional structure in the
data.

Define the function:

g(K,!v1, . . . ,!vN ) = tr

[
K

(
−

d∑

i=1

!vi!v
T
i +

N∑

i=d+1

!vi!v
T
i

)]
.

Thus, f(K) is the minimization of g(K,!v1, . . . ,!vN )
over eigenvectors. Assume we have a current setting
of K denoted Kt and a current setting of the eigen-
vectors !vt

1, . . .!v
t
N . In general, we must have:

f(Kt) ≤ g(Kt,!vt
1, . . . ,!v

t
N )

After Step 4 of the MVE algorithm we obtain:

f(Kt) = g(Kt,!vt+1
1 , . . . ,!vt+1

N )

After Step 6 of the MVE algorithm, SDP ensures that:

g(Kt+1,!vt+1
1 , . . .!vt+1

N ) ≤ g(Kt,!vt+1
1 , . . .!vt+1

N ).

Since f(K) is a minimization of g(K,!v1, . . . ,!vN ),

f(Kt+1) ≤ g(Kt+1,!vt+1
1 , . . . ,!vt+1

N )
≤ g(Kt,!vt+1

1 , . . . ,!vt+1
N )

≤ f(Kt)

showing that f(Kt) ≥ f(Kt+1) after each loop of the
MVE algorithm and f(K) decreases monotonically.

It is interesting to note that spectral cost functions
of the matrix K of the form

∑
i αiλi are convex if

αi ≤ αi+1 and the eigenvalues of K are arranged in
decreasing order λi ≥ λi+1. Since MVE’s cost func-
tion has αi ≥ αi+1, it is concave. In practice, the MVE
algorithm does not seem to have any significant local
minima since it converges reliably to the same solution
despite variations in initialization, as shown in Figure
2. In addition, the solution it obtains is consistently
superior to ones found by SDE and kernel PCA. An-
other interesting property of MVE is that the selection
of d does not need to be precise. For instance, setting
d = 2 and computing a 3D visualization in Step 8 of
the algorithm will still produce a better visualization
than using traditional SDE or kernel PCA techniques.
These empirical advantages are presented in further
detail in the next section.

5 EXPERIMENTS

We present a variety of experiments using both syn-
thetic and real-world data to highlight the perfor-
mance of MVE, specifically in comparison to SDE and
KPCA.

5.1 SYNTHETIC DATA

In Figure 3, we see MVE appropriately embedding the
simple data set consisting of a hub and spokes. We

! " #! #" $! $" %! %" &! &" "!
!"!

!&!

!%!

!$!

!#!

!

#!

'()*!!*+,-,*./01*!!*23#

Figure 2: The results of using 10 random initializations
for MVE, instead of initializing with the KPCA or
SDE solution. We see that for d = 1, MVE converges
each time to the same solution, showing that MVE
is robust to local minima. We also note that seeding
MVE with KPCA reduces the number of iterations by
5 fold in practice.

!

"

#

$

!

"

#

$

%

&

!

!!

%

!

!'

!!

!&

%

&

!

'

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

+,-.-/01

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

%*

&*

234

Figure 3: MVE correctly embeds the synthetic hub
and spokes data in 2 dimensions (left). The eigen-
spectrum (right) of the embedding generated by MVE
shows that the embedding is simply 2 dimensional
and that MVE does not puff out the data into an N -
dimensional space like SDE.

saw in Figure 1 that SDE puffs out this dataset into
an N -dimensional hub. Meanwhile, MVE recovers the
correct minimum volume two-dimensional embedding.
Although this example is very manufactured, it clearly
highlights a deficiency in SDE, and one can imagine
stringing together many of these hubs in a variety of
different ways to create hierarchical hub-like structures
that could cause SDE to use many more dimensions
than necessary.

Figure 4 shows a synthetic dataset consisting of 50
points sampled from a 2 dimensional spiral, where each
of the 50 points is connected to its 3 nearest neighbors.
As expected, both MVE and SDE find nearly identical
embeddings using the same parameters (k = 3) for
both, and d = 1 for MVE. Both algorithms successfully
reveal the underlying 1-dimensional structure in the
data.

MVE

vs.

Define the function:

g(K,!v1, . . . ,!vN ) = tr

[
K

(
−

d∑

i=1

!vi!v
T
i +

N∑

i=d+1

!vi!v
T
i

)]
.

Thus, f(K) is the minimization of g(K,!v1, . . . ,!vN )
over eigenvectors. Assume we have a current setting
of K denoted Kt and a current setting of the eigen-
vectors !vt

1, . . .!v
t
N . In general, we must have:

f(Kt) ≤ g(Kt,!vt
1, . . . ,!v

t
N )

After Step 4 of the MVE algorithm we obtain:

f(Kt) = g(Kt,!vt+1
1 , . . . ,!vt+1

N )

After Step 6 of the MVE algorithm, SDP ensures that:

g(Kt+1,!vt+1
1 , . . .!vt+1

N ) ≤ g(Kt,!vt+1
1 , . . .!vt+1

N ).

Since f(K) is a minimization of g(K,!v1, . . . ,!vN ),

f(Kt+1) ≤ g(Kt+1,!vt+1
1 , . . . ,!vt+1

N )
≤ g(Kt,!vt+1

1 , . . . ,!vt+1
N )

≤ f(Kt)

showing that f(Kt) ≥ f(Kt+1) after each loop of the
MVE algorithm and f(K) decreases monotonically.

It is interesting to note that spectral cost functions
of the matrix K of the form

∑
i αiλi are convex if

αi ≤ αi+1 and the eigenvalues of K are arranged in
decreasing order λi ≥ λi+1. Since MVE’s cost func-
tion has αi ≥ αi+1, it is concave. In practice, the MVE
algorithm does not seem to have any significant local
minima since it converges reliably to the same solution
despite variations in initialization, as shown in Figure
2. In addition, the solution it obtains is consistently
superior to ones found by SDE and kernel PCA. An-
other interesting property of MVE is that the selection
of d does not need to be precise. For instance, setting
d = 2 and computing a 3D visualization in Step 8 of
the algorithm will still produce a better visualization
than using traditional SDE or kernel PCA techniques.
These empirical advantages are presented in further
detail in the next section.

5 EXPERIMENTS

We present a variety of experiments using both syn-
thetic and real-world data to highlight the perfor-
mance of MVE, specifically in comparison to SDE and
KPCA.

5.1 SYNTHETIC DATA

In Figure 3, we see MVE appropriately embedding the
simple data set consisting of a hub and spokes. We

! " #! #" $! $" %! %" &! &" "!
!"!

!&!

!%!

!$!

!#!

!

#!

'()*!!*+,-,*./01*!!*23#

Figure 2: The results of using 10 random initializations
for MVE, instead of initializing with the KPCA or
SDE solution. We see that for d = 1, MVE converges
each time to the same solution, showing that MVE
is robust to local minima. We also note that seeding
MVE with KPCA reduces the number of iterations by
5 fold in practice.

!

"

#

$

!

"

#

$

%

&

!

!!

%

!

!'

!!

!&

%

&

!

'

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

+,-.-/01

! " # $ % & ' ( )
!!*

*

!*

"*

#*

$*

%*

&*

234

Figure 3: MVE correctly embeds the synthetic hub
and spokes data in 2 dimensions (left). The eigen-
spectrum (right) of the embedding generated by MVE
shows that the embedding is simply 2 dimensional
and that MVE does not puff out the data into an N -
dimensional space like SDE.

saw in Figure 1 that SDE puffs out this dataset into
an N -dimensional hub. Meanwhile, MVE recovers the
correct minimum volume two-dimensional embedding.
Although this example is very manufactured, it clearly
highlights a deficiency in SDE, and one can imagine
stringing together many of these hubs in a variety of
different ways to create hierarchical hub-like structures
that could cause SDE to use many more dimensions
than necessary.

Figure 4 shows a synthetic dataset consisting of 50
points sampled from a 2 dimensional spiral, where each
of the 50 points is connected to its 3 nearest neighbors.
As expected, both MVE and SDE find nearly identical
embeddings using the same parameters (k = 3) for
both, and d = 1 for MVE. Both algorithms successfully
reveal the underlying 1-dimensional structure in the
data.

Convergence
10 random initializations of MVE 
with the USPS Twos Dataset

The Algorithm Results

Summary of Results

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera

Aphrodite

Athena

Hades

Eros

Pan

Dionysus

Hephasstus Ares

Poseidon

Hermes
ApolloZeus

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera Aphrodite
AthenaHades

Eros

Pan

Dionysus
Hephasstus

Ares

Poseidon

Hermes

Apollo

Zeus

Theseus
JasonMedusa

PerseusHeracles

Demeter

Hera

Aphrodite

Athena
HadesEros

Pan Dionysus
Hephasstus

Ares

Poseidon
Hermes

Apollo

Zeus

KPCA SDE MVE

Figure 6: Embedding of social networks. KPCA (left), SDE (middle), and MVE (right).

dimensions. Furthermore, we can see in Figure 6 that
KPCA alone does a poor job of embedding the data
in two dimensions, allowing us to see only a small per-
centage of the variance in the data.

Figure 7: Eigenvalue spectra for the embeddings of
social network data by KPCA (left), SDE (middle),
and MVE (right).

We see from visualizing social networks that MVE pro-
vides a much greater advantage over SDE when the
connectivity structure C is not a uniformly sampled
mesh but takes on different structures, such as hubs
and links. This advantage allows us to tackle visual-
ization problems ordinarily not handled by algorithms
such as SDE, for example phylogentic trees. For vi-
sualizing trees, it is helpful to modify MVE and SDE
with added constraints that prevent all pairwise dis-
tances from shrinking: Ki,i + Kj,j − Ki,j − Kj,i ≥
Ai,i + Aj,j −Ai,j −Aj,i∀i,j . This prevents the embed-
ding from collapsing upon itself due to sparse connec-
tivity. Figure 8 shows the result applied to the phy-
logenetic trees of salamanders and crustaceans. Here,
connectivity is sparse and is given by a spanning tree.
The figure shows MVE, SDE, and their modified ver-
sions with full constraints which we call MVE-Full and
SDE-Full. Clearly, MVE-Full provides the best visu-
alization of the tree structure.

5.3 SUMMARY

The following table summarizes the comparisons be-
tween MVE, SDE, and KPCA for the experiments in
this paper in terms of accurately being able to rep-
resent the data in 2D. We see that in all cases MVE
is able to capture more of the variance of the data in
the first two eigenvectors, providing a more accurate 2-
dimensional embedding. Although distances between

points in local neighborhoods are preserved in the ker-
nels learned by both MVE and SDE, as the sum of the
first two normalized eigenvalues decreases from 100%,
we can no longer say that local distances are being
preserved in the resulting embedding. This is because
the algorithm truncates the last N − 2 eigenvectors to
create the embedding, and therefore any distance in-
formation which comes from those eigenvectors is lost.
MVE performs better than SDE in this regard, achiev-
ing near 100% accuracy for the twos and faces datasets,
and for the difficult social network dataset achieving a
significant improvement over the other algorithms.

Percentage of eigenvalue energy captured in 2D

MVE SDE KPCA
Hubs and Spokes 100% 29.9% 95.0%
Spiral (% in 1D) 99.9% 99.9% 45.8%
Twos 97.8% 88.4% 18.4%
Faces 99.2% 83.6% 31.4%
Social Networks 77.5% 41.7% 29.3%

5.4 COMPUTATIONAL COMPLEXITY

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP [10]. Therefore the running time of MVE
is proportional to the running time of SDE by some
constant factor corresponding to the number of iter-
ations needed until convergence. A better analysis of
the rate of convergence will be a matter of future work.
However, for the experiments listed above, a reason-
able convergence was reached after approximately 10
iterations.

Currently, running MVE with a standard SDP solver
is slow (up to ten times slower than SDE). However,
because of its similarity to SDE, MVE should be able
to benefit from any speed-ups for SDE including SDE-
customized SDP solvers and speed-ups from approxi-
mation schemes such as Landmark Semidefinite Em-
bedding (lSDE) [10].

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera

Aphrodite

Athena

Hades

Eros

Pan

Dionysus

Hephasstus Ares

Poseidon

Hermes
ApolloZeus

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera Aphrodite
AthenaHades

Eros

Pan

Dionysus
Hephasstus

Ares

Poseidon

Hermes

Apollo

Zeus

Theseus
JasonMedusa

PerseusHeracles

Demeter

Hera

Aphrodite

Athena
HadesEros

Pan Dionysus
Hephasstus

Ares

Poseidon
Hermes

Apollo

Zeus

KPCA SDE MVE

Figure 6: Embedding of social networks. KPCA (left), SDE (middle), and MVE (right).

dimensions. Furthermore, we can see in Figure 6 that
KPCA alone does a poor job of embedding the data
in two dimensions, allowing us to see only a small per-
centage of the variance in the data.

Figure 7: Eigenvalue spectra for the embeddings of
social network data by KPCA (left), SDE (middle),
and MVE (right).

We see from visualizing social networks that MVE pro-
vides a much greater advantage over SDE when the
connectivity structure C is not a uniformly sampled
mesh but takes on different structures, such as hubs
and links. This advantage allows us to tackle visual-
ization problems ordinarily not handled by algorithms
such as SDE, for example phylogentic trees. For vi-
sualizing trees, it is helpful to modify MVE and SDE
with added constraints that prevent all pairwise dis-
tances from shrinking: Ki,i + Kj,j − Ki,j − Kj,i ≥
Ai,i + Aj,j −Ai,j −Aj,i∀i,j . This prevents the embed-
ding from collapsing upon itself due to sparse connec-
tivity. Figure 8 shows the result applied to the phy-
logenetic trees of salamanders and crustaceans. Here,
connectivity is sparse and is given by a spanning tree.
The figure shows MVE, SDE, and their modified ver-
sions with full constraints which we call MVE-Full and
SDE-Full. Clearly, MVE-Full provides the best visu-
alization of the tree structure.

5.3 SUMMARY

The following table summarizes the comparisons be-
tween MVE, SDE, and KPCA for the experiments in
this paper in terms of accurately being able to rep-
resent the data in 2D. We see that in all cases MVE
is able to capture more of the variance of the data in
the first two eigenvectors, providing a more accurate 2-
dimensional embedding. Although distances between

points in local neighborhoods are preserved in the ker-
nels learned by both MVE and SDE, as the sum of the
first two normalized eigenvalues decreases from 100%,
we can no longer say that local distances are being
preserved in the resulting embedding. This is because
the algorithm truncates the last N − 2 eigenvectors to
create the embedding, and therefore any distance in-
formation which comes from those eigenvectors is lost.
MVE performs better than SDE in this regard, achiev-
ing near 100% accuracy for the twos and faces datasets,
and for the difficult social network dataset achieving a
significant improvement over the other algorithms.

Percentage of eigenvalue energy captured in 2D

MVE SDE KPCA
Hubs and Spokes 100% 29.9% 95.0%
Spiral (% in 1D) 99.9% 99.9% 45.8%
Twos 97.8% 88.4% 18.4%
Faces 99.2% 83.6% 31.4%
Social Networks 77.5% 41.7% 29.3%

5.4 COMPUTATIONAL COMPLEXITY

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP [10]. Therefore the running time of MVE
is proportional to the running time of SDE by some
constant factor corresponding to the number of iter-
ations needed until convergence. A better analysis of
the rate of convergence will be a matter of future work.
However, for the experiments listed above, a reason-
able convergence was reached after approximately 10
iterations.

Currently, running MVE with a standard SDP solver
is slow (up to ten times slower than SDE). However,
because of its similarity to SDE, MVE should be able
to benefit from any speed-ups for SDE including SDE-
customized SDP solvers and speed-ups from approxi-
mation schemes such as Landmark Semidefinite Em-
bedding (lSDE) [10].

MVE SDE

KPCA

MVE SDE

KPCA

MVE SDE

KPCA

KPCA SDE MVE

MVE
SDE

KPCA

MVE
SDE

KPCA

MVE
SDE

KPCA

24%

74%

MVE

1%2%
7%

19%

69%

SDE

1%1%1%1%1%1%2%2%2%
2%
2%
2%
3%
3%

3%

4%

4%

4%

6%
7% 7%

11%

KPCA

24%

74%

MVE

1%2%
7%

19%

69%

SDE

1%1%1%1%1%1%2%2%2%
2%
2%
2%
3%
3%

3%

4%

4%

4%

6%
7% 7%

11%

KPCA

24%

74%

MVE

1%2%
7%

19%

69%

SDE

1%1%1%1%1%1%2%2%2%
2%
2%
2%
3%
3%

3%

4%

4%

4%

6%
7% 7%

11%

KPCA

39%

60%

MVE

2%
10%

20%

67%

SDE

1%1%1%1%2%2%
2%

3%

4%

5%

7%

10%

10%
13%

18%

KPCA

39%

60%

MVE

2%
10%

20%

67%

SDE

1%1%1%1%2%2%
2%

3%

4%

5%

7%

10%

10%
13%

18%

KPCA

39%

60%

MVE

2%
10%

20%

67%

SDE

1%1%1%1%2%2%
2%

3%

4%

5%

7%

10%

10%
13%

18%

KPCA

Images of Twos and Faces

!"#$ %&' ()' %&'!*+,, ()'-.+,,

!"#$ %&' ()' %&'!*+,, ()'-.+,,KPCA

52.8%

SDE MVE SDE-full MVE-full

99.6% 100% 93.7% 98.7%
Salamanders

Crustaceans

38.2% 100% 100% 88.3%

!"#$ %&' ()' %&'!*+,, ()'-.+,,

97.7%

30 species

56 species

Phylogenetic Trees

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera

Aphrodite

Athena

Hades

Eros

Pan

Dionysus

Hephasstus Ares

Poseidon

Hermes
ApolloZeus

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera Aphrodite
AthenaHades

Eros

Pan

Dionysus
Hephasstus

Ares

Poseidon

Hermes

Apollo

Zeus

Theseus
JasonMedusa

PerseusHeracles

Demeter

Hera

Aphrodite

Athena
HadesEros

Pan Dionysus
Hephasstus

Ares

Poseidon
Hermes

Apollo

Zeus

Social Networks
KPCA SDE MVE

Visualizing data by Unfolding

The Hubs and Spokes Problem 
Unfolding and Flattening

A Novel Cost Fuction

Complexity and Convergence
Constraints

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships or distances in the data.

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions:

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships or distances in the data.

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions:

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






SDE

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships in the data.

MVE is similar to Semidefinite Embedding (SDE)
which works by “pulling apart” the data while pre-
serving local distances...

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






lows:

f(K) = −
d∑

i=1

λi +
N∑

i=d+1

λi

= −
d∑

i=1

tr(λi"vi"v
T
i ) +

N∑

i=d+1

tr(λi"vi"v
T
i )

= −
d∑

i=1

tr(K"vi"v
T
i ) +

N∑

i=d+1

tr(K"vi"v
T
i )

= tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]

Therefore, the MVE problem can be rewritten as:

min
K∈K

f(K) = min
K∈K

tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]

s.t. K"vi = λi"vi, "vT
i "vj = δij , λi ≥ λi+1, ∀i, j.

Interestingly, f(K) does not necessarily need all the
above constraints. Consider minimizing f(K) over an
arbitrary set of eigenvectors "v1, . . . ,"vN as follows:

min
"v1, . . . ,"vN

"vT
i "vj = δij

tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]

This is simply a Procrustes problem which is straight-
forward to solve. Clearly, to minimize the negative
term, we set "v1, . . . ,"vd to the top d eigenvectors of
K. Similarly, to minimize the positive term, we set
"vd+1, . . . ,"vN to the bottom N − d eigenvectors of K.
Therefore, minimizing f over eigenvectors:

min
"v1, . . . ,"vN

"vT
i "vj = δij

tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]

is equivalent to the value

tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]

s.t. K"vi = λi"vi, "vT
i "vj = δij , λi ≥ λi+1, ∀i, j.

under the more rigid set of constraints. In other words,
minimization over arbitrary eigenvectors is equivalent
to setting them to the eigenvectors of the matrix K.

These steps finally let us write a variational version of
the MVE problem in Equation 2 which is straightfor-
ward to minimize. The variational version makes the
choice of eigenvectors an additional parameter:

min
K∈K

min
"v1, . . . ,"vN

"vT
i "vj = δij

tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]
(3)

When we minimize over the additional parameter, we
get the MVE formulation in Equation 2. Thus, we
can now approach the minimization problem for MVE
as an alternating minimization found by iterating be-
tween solving for the best K while the set of eigen-
vectors is fixed and then solving for the best set of
eigenvectors given K. We simply need to initialize the
algorithm with either a starting K matrix or a start-
ing set of eigenvectors "v1, . . . ,"vN . For instance, we
may begin with K = A, the original affinity matrix
between pairs of the input data-points or initialize K
with the solution found by SDE.

Table 1 summarizes the MVE algorithm under the al-
ternating minimization scheme.

Input ("xi)N
i=1, kernel κ, and parameters d, k.

Step 1 Form affinity matrix A ∈ %N×N with
pairwise entries Aij = κ("xi, "xj).

Step 2 Use A to find a binary connectivity
matrix C via k-nearest neighbors.

Step 3 Initialize K = A.
Step 4 Solve for the eigenvectors "v1, . . . ,"vN and

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN of K.

Step 5 Set B = −
d∑

i=1
"vi"vT

i +
N∑

i=d+1
"vi"vT

i .

Step 6 Using SDP find K̂ = arg minK∈K tr(KB).
Step 7 If ‖K − K̂‖ ≥ ε set K = K̂, go to Step 4.
Step 8 Perform kernel PCA on K̂ to get

d-dimensional output vectors "y1, . . . , "yN .

Table 1: Minimum Volume Embedding Algorithm.

Although we have not proven that Equation 3 will con-
verge to a global minimum, we can prove that it will
converge to a local minimum, since it is a variational
bound on the original problem in Equation 2. Fur-
thermore, if we initialize the algorithm with the kernel
PCA solution (as in Table 1 K = A), we are guaran-
teed to improve the cost function beyond the kernel
PCA solution. Similarly, if we initialize the algorithm
with the SDE solution, we are guaranteed to improve
the cost function from that seed as well. We formal-
ize the monotonicity of the MVE algorithm with the
following theorem.

Theorem 1 The iterative MVE algorithm is guar-
anteed to monotonically decrease the cost function
f(K) = −

∑d
i=1 λi +

∑N
i=d+1 λi.

Proof 1 For any K ∈ K, recall that f(K) =

min
"v1, . . . ,"vN

"vT
i "vj = δij

tr

[
K

(
−

d∑

i=1

"vi"v
T
i +

N∑

i=d+1

"vi"v
T
i

)]
.

Algorithm Overview

An Iterated Monotonic SDP

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships in the data.

MVE is similar to Semidefinite Embedding (SDE)
which works by “pulling apart” the data while pre-
serving local distances...

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi s.t. K ∈ K

= min
K
−

d∑

i=1

λi + tr
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,λi ≥ λi+1, v
T
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

Lock V and solve SDP for K. Lock K and solve SVD for
V. Finding the top eigenvectors of current K is simply
a Procrustes problem.

Experiments

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships in the data.

MVE is similar to Semidefinite Embedding (SDE)
which works by “pulling apart” the data while pre-
serving local distances...

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices

which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi s.t. K ∈ K

= min
K
−

d∑

i=1

λi + tr
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,λi ≥ λi+1, v
T
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigen-
vectors of current K is simply a Procrustes problem.

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships in the data.

MVE is similar to Semidefinite Embedding (SDE)
which works by “pulling apart” the data while pre-
serving local distances...

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices

which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi s.t. K ∈ K

= min
K
−

d∑

i=1

λi + tr
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,λi ≥ λi+1, v
T
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-
tors of the current K is simply the Procrustes problem.

Spectral cost functions of the matrix K of the form∑
i αiλi are convex if αi ≤ αi+1 and the eigenvalues of

K are arranged in decreasing order λi ≥ λi+1. Since
MVE’s cost function has αi ≥ αi+1, it is concave. In
practice, the MVE algorithm does not seem to have
any significant local minima since it converges reliably
to the same solution despite variations in initialization.

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP. Therefore the running time of MVE is
proportional to the running time of SDE by some con-
stant factor corresponding to the number of iterations
needed until convergence which for the experiments on
the poster was reach after 10 iterations.

Learning a kernel matrix for nonlinear dimensionality
reduction Weinberger, Sha, Saul (2004), Unsupervised
learning of image manifolds by semidefinite program-
ming Weinberger, Packer, Saul (2005).

The following experiments show that MVE more ac-
curately represents the following datasets using only a
few dimensions, as compared to SDE and KPCA. SDE
sacrifices local distance accuracy when truncating ex-
tra dimensions. Because MVE explicitly maximizes
the amount of energy in the top d dimensions, local
distances are better preserved.

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships in the data.

MVE is similar to Semidefinite Embedding (SDE)
which works by “pulling apart” the data while pre-
serving local distances...

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given N points in a high-dimensional space !xi ∈ "D

for i = 1 . . . N , can we find a low-dimensional
representation of corresponding points !yi ∈ "d for
i = 1 . . . N such that d # D which best preserves the
local relationships in the data.

MVE is similar to Semidefinite Embedding (SDE)
which works by “pulling apart” the data while pre-
serving local distances...

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest:

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






MVE

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given !xi ∈ "D for i = 1 . . . N , can we find !yi ∈ "d for
i = 1 . . . N such that d # D?

Standard PCA or Kernel PCA (Shoelkopf)
- Get matrix A, affinities between pairs Aij = k(xi, xj)
- Get SVD of A and view top projections

Semidefinite Embedding (Weinberger, Saul)
- Get matrix A, compute k-nearest neighbor graph C
- Find K using a Semidefinite Program (SDP) which
“pulls apart” A while preserving distances in C
- Get SVD of K and view top projections

MVE is similar to Semidefinite Embedding (SDE)
which uses a Semidefinite Program (SDP) to “pull
apart” the data while preserving local distances, and
then an Singular Value Decomposition (SVD) to view
the low dimensional embedding.

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi s.t. K ∈ K

= min
K
−

d∑

i=1

λi + tr
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,λi ≥ λi+1, v
T
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-
tors of the current K is simply the Procrustes problem.

Original

SDE
MVE

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given !xi ∈ "D for i = 1 . . . N , can we find !yi ∈ "d for
i = 1 . . . N such that d # D?

Standard PCA or Kernel PCA (Shoelkopf)
- Get matrix A, affinities between pairs Aij = k(xi, xj)
- Get SVD of A and view top projections

Semidefinite Embedding (SDE)
(Weinberger, Saul)
- Get matrix A, compute k-nearest neighbor graph C
- Find K using a Semidefinite Program (SDP) which
“pulls apart” A while preserving distances in C
- Get SVD of K and view top projections

MVE is similar to Semidefinite Embedding (SDE)
which uses a Semidefinite Program (SDP) to “pull
apart” the data while preserving local distances, and
then an Singular Value Decomposition (SVD) to view
the low dimensional embedding.

Semidefinite Embedding (SDE) pulls apart the swiss
roll producing a 2d embedding. Minimum Volume Em-
bedding (MVE) behaves similarly.

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi s.t. K ∈ K

= min
K
−

d∑

i=1

λi + tr
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,λi ≥ λi+1, v
T
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-
tors of the current K is simply the Procrustes problem.

SDE MVE

Error from truncation

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera

Aphrodite

Athena

Hades

Eros

Pan

Dionysus

Hephasstus Ares

Poseidon

Hermes
ApolloZeus

Theseus

JasonMedusa

Perseus

Heracles

Demeter

Hera Aphrodite
AthenaHades

Eros

Pan

Dionysus
Hephasstus

Ares

Poseidon

Hermes

Apollo

Zeus

Theseus
JasonMedusa

PerseusHeracles

Demeter

Hera

Aphrodite

Athena
HadesEros

Pan Dionysus
Hephasstus

Ares

Poseidon
Hermes

Apollo

Zeus

KPCA SDE MVE

Figure 6: Embedding of social networks. KPCA (left), SDE (middle), and MVE (right).

dimensions. Furthermore, we can see in Figure 6 that
KPCA alone does a poor job of embedding the data
in two dimensions, allowing us to see only a small per-
centage of the variance in the data.

Figure 7: Eigenvalue spectra for the embeddings of
social network data by KPCA (left), SDE (middle),
and MVE (right).

We see from visualizing social networks that MVE pro-
vides a much greater advantage over SDE when the
connectivity structure C is not a uniformly sampled
mesh but takes on different structures, such as hubs
and links. This advantage allows us to tackle visual-
ization problems ordinarily not handled by algorithms
such as SDE, for example phylogentic trees. For vi-
sualizing trees, it is helpful to modify MVE and SDE
with added constraints that prevent all pairwise dis-
tances from shrinking: Ki,i + Kj,j − Ki,j − Kj,i ≥
Ai,i + Aj,j −Ai,j −Aj,i∀i,j . This prevents the embed-
ding from collapsing upon itself due to sparse connec-
tivity. Figure 8 shows the result applied to the phy-
logenetic trees of salamanders and crustaceans. Here,
connectivity is sparse and is given by a spanning tree.
The figure shows MVE, SDE, and their modified ver-
sions with full constraints which we call MVE-Full and
SDE-Full. Clearly, MVE-Full provides the best visu-
alization of the tree structure.

5.3 SUMMARY

The following table summarizes the comparisons be-
tween MVE, SDE, and KPCA for the experiments in
this paper in terms of accurately being able to rep-
resent the data in 2D. We see that in all cases MVE
is able to capture more of the variance of the data in
the first two eigenvectors, providing a more accurate 2-
dimensional embedding. Although distances between

points in local neighborhoods are preserved in the ker-
nels learned by both MVE and SDE, as the sum of the
first two normalized eigenvalues decreases from 100%,
we can no longer say that local distances are being
preserved in the resulting embedding. This is because
the algorithm truncates the last N − 2 eigenvectors to
create the embedding, and therefore any distance in-
formation which comes from those eigenvectors is lost.
MVE performs better than SDE in this regard, achiev-
ing near 100% accuracy for the twos and faces datasets,
and for the difficult social network dataset achieving a
significant improvement over the other algorithms.

Percentage of eigenvalue energy captured in 2D

MVE SDE KPCA
Hubs and Spokes 100% 29.9% 95.0%
Spiral (% in 1D) 99.9% 99.9% 45.8%
Twos 97.8% 88.4% 18.4%
Faces 99.2% 83.6% 31.4%
Social Networks 77.5% 41.7% 29.3%

5.4 COMPUTATIONAL COMPLEXITY

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP [10]. Therefore the running time of MVE
is proportional to the running time of SDE by some
constant factor corresponding to the number of iter-
ations needed until convergence. A better analysis of
the rate of convergence will be a matter of future work.
However, for the experiments listed above, a reason-
able convergence was reached after approximately 10
iterations.

Currently, running MVE with a standard SDP solver
is slow (up to ten times slower than SDE). However,
because of its similarity to SDE, MVE should be able
to benefit from any speed-ups for SDE including SDE-
customized SDP solvers and speed-ups from approxi-
mation schemes such as Landmark Semidefinite Em-
bedding (lSDE) [10].

Discussion

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-
tors of the current K is simply the Procrustes problem.

Spectral cost functions of the matrix K of the form∑
i αiλi are convex if αi ≤ αi+1 and the eigenvalues of

K are arranged in decreasing order λi ≥ λi+1. Since
MVE’s cost function has αi ≥ αi+1, it is concave. In
practice, the MVE algorithm does not seem to have
any significant local minima since it converges reliably
to the same solution despite variations in initialization.

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP. Therefore the running time of MVE is
proportional to the running time of SDE by some con-
stant factor corresponding to the number of iterations
needed until convergence which for the experiments on
the poster was reach after 10 iterations.

Nonlinear component analysis as a kernel eigenvalue
problem Schölkopf, Smola, Müller (1998), Learning a
kernel matrix for nonlinear dimensionality reduction
Weinberger, Sha, Saul (2004), Unsupervised learn-
ing of image manifolds by semidefinite programming
Weinberger, Packer, Saul (2005).

Simply unfolding in every direction can go wrong. We
optimize general spectral functions to minimize vol-
ume, improve eigengaps and reduce truncation error.

The following experiments show that MVE more ac-
curately represents the following datasets using only a
few dimensions, as compared to SDE and KPCA. SDE
sacrifices local distance accuracy when truncating ex-
tra dimensions. Because MVE explicitly maximizes
the amount of energy in the top d dimensions, local
distances are better preserved.

Extensions

min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi s.t. K ∈ K

= min
K
−

d∑

i=1

λi +
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

λitr(viv
T
i ) +

D∑

i=d+1

λitr(viv
T
i )

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,λi ≥ λi+1, v
T
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-
tors of the current K is simply the Procrustes problem.

Spectral cost functions of the matrix K of the form∑
i αiλi are convex if αi ≤ αi+1 and the eigenvalues of

K are arranged in decreasing order λi ≥ λi+1. Since
MVE’s cost function has αi ≥ αi+1, it is concave. In
practice, the MVE algorithm does not seem to have
any significant local minima since it converges reliably
to the same solution despite variations in initialization.

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP. Therefore the running time of MVE is
proportional to the running time of SDE by some con-
stant factor corresponding to the number of iterations
needed until convergence which for the experiments on
the poster was reach after 10 iterations.

Nonlinear component analysis as a kernel eigenvalue
problem Schölkopf, Smola, Müller (1998), Learning a
kernel matrix for nonlinear dimensionality reduction
Weinberger, Sha, Saul (2004), Unsupervised learn-
ing of image manifolds by semidefinite programming
Weinberger, Packer, Saul (2005).

Simply unfolding in every direction can go wrong. We
optimize general spectral functions to minimize vol-
ume, improve eigengaps and reduce truncation error.

The following experiments show that MVE more ac-
curately represents the following datasets using only a
few dimensions, as compared to SDE and KPCA. SDE
sacrifices local distance accuracy when truncating ex-
tra dimensions. Because MVE explicitly maximizes
the amount of energy in the top d dimensions, local
distances are better preserved.

We have found that MVE provides a much greater
advantage over SDE when we extend each algorithm
to use any specified connectivity structure C, as is
shown in the social networks and phylogenetic trees
examples. Note: for visualizing trees, it is help-
ful to modify MVE and SDE with added constraints
that prevent all pairwise distances from shrinking:
Ki,i +Kj,j −Ki,j −Kj,i ≥ Ai,i +Aj,j −Ai,j −Aj,i∀i,j .
This prevents the embedding from collapsing upon it-
self due to sparse connectivity.

Spectral cost functions of the matrix K of the form∑
i αiλi are convex if αi ≥ αi+1 and the eigenvalues of

K are arranged in decreasing order λi ≥ λi+1.∗ Since
MVE’s cost function has αi ≤ αi+1, it is concave. In
practice, the MVE algorithm does not seem to have
any significant local minima since it converges reliably
to the same solution despite variations in initialization.

The running time for one iteration of MVE is identical
to that of running SDE: O(N3 + C3) where N is the
number of points, and C is the number of constraints
in the SDP. Therefore the running time of MVE is
proportional to the running time of SDE by some con-
stant factor corresponding to the number of iterations
needed until convergence which for the experiments on
this poster was reached after approx. 10 iterations.

Nonlinear component analysis as a kernel eigenvalue
problem Schölkopf, Smola, Müller (1998), Learning a
kernel matrix for nonlinear dimensionality reduction
Weinberger, Sha, Saul (2004), Unsupervised learn-
ing of image manifolds by semidefinite programming
Weinberger, Packer, Saul (2005).

The following experiments show that MVE more ac-
curately represents the following datasets using only a
few dimensions, as compared to SDE and KPCA. SDE
sacrifices local distance accuracy when truncating ex-
tra dimensions. Because MVE explicitly maximizes
the amount of energy in the top d dimensions, local
distances are better preserved.

Minimum Volume Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

How do we best visualize high-dimensional data?
Given !xi ∈ "D for i = 1 . . . N , can we find !yi ∈ "d for
i = 1 . . . N such that d # D?

Standard PCA or Kernel PCA (Shoelkopf)
- Get matrix A, affinities between pairs Aij = k(xi, xj)
- Get SVD of A and view top projections

Semidefinite Embedding (SDE)
(Weinberger, Saul)
- Get matrix A, compute k-nearest neighbor graph C
- Find K using a Semidefinite Program (SDP) which
“pulls apart” A while preserving distances in C
- Get SVD of K and view top projections

MVE is similar to Semidefinite Embedding (SDE)
which uses a Semidefinite Program (SDP) to “pull
apart” the data while preserving local distances, and
then an Singular Value Decomposition (SVD) to view
the low dimensional embedding.

Semidefinite Embedding (SDE) pulls apart the swiss
roll producing a 2d embedding. Minimum Volume Em-
bedding (MVE) behaves similarly.

Pulling apart the data in all directions could increase
the dimensionality and worsen the visualization.

Instead, we want to pull apart the data only in
the visualized dimensions and squash down the
remaining ones.

The cost function of SDE stretches the data in
all directions by maximizing the sum of the eigenval-
ues.

min
K∈K

fSDE(K) = min
K∈K

−tr(K) = min
K∈K

−
N∑

i=1

λi

The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.

min
K∈K

f(K) = min
K∈K

−
d∑

i=1

λi +
N∑

i=d+1

λi (1)

Here, we use K to denote the convex set of matrices
which satisfy the properties of SDE and define it as:

K =






∀K ∈ "N×N

∣∣∣∣∣∣∣∣∣∣

K & 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji =
Aii + Ajj −Aij −Aji

∀ i, j when Cij = 1






min
K
−

d∑

i=1

λi + tr
D∑

i=d+1

λi

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K,Kvi = λivi,λi ≥ λi+1, v
T
i vj = δij

= min
K

min
V
−

d∑

i=1

trKviv
T
i + tr

D∑

i=d+1

trKviv
T
i

s.t. K ∈ K, vT
i vj = δij

The MVE cost function is not an SDP, but we can
compute a variational upper bound on the the cost to
get an Iterated Monotonic SDP.

We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-
tors of the current K is simply the Procrustes problem.


