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Minimum Volume Embedding

Visualizing data by Unfolding A Novel Cost Fuction Algorithm Overview Experiments
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The cost function for MVE stretches only the top d
dimensions and squashes the rest, directly optimizing
the eigenspectrum of the data.
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bedding (MVE) behaves similarly.

The running time for one iteration of MVE is identical
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We lock V and solve an SDP for K, then lock K and
solve an SVD for V. Note that finding the top eigenvec-

tors of the current K is simply the Procrustes problem.
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SDE MVE Extensions
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Simply unfolding in every direction can go wrong. We

optimize general spectral functions to minimize vol- ful to modify MVE ,a“q SDE with added cons.t ra.ints
ume, improve eigengaps and reduce truncation error. that prevent all pairwise distances from shrinking: Crustaceans
Kii+K;;—K;;j—Kj; >A;ii+A;;—Ai;j —Aj Vi ;. 56 species

Thi h ing f llapsi it-
is prevents the embedd.m.g rom collapsing upon it 38 29, 100%% 100% 88 3% ——
self due to sparse connectivity.




