
Learning a Degree-Augmented Distance Metric From
a Network

Bert Huang⇤
Computer Science Dept.
University of Maryland

College Park, MD 20742
bert@cs.umd.edu

Blake Shaw
Foursquare

36 Cooper Sq., Fl. 6
New York, NY 10003

blake@foursquare.com

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

jebara@cs.columbia.edu

In many naturally occurring networks, connected nodes tend to have empirical similarities [1], which
is a phenomenon commonly referred to as homophily. It is useful to learn how to relate the network
homophily to the measurable features from data. However, due to the inherent structural nature
of networks, we should not expect the similarity between connected nodes to behave in a purely
pairwise independent manner. In an attempt to address the structural nature of networks, we model
similarity between nodes with an added structural component: the structural measure node degree.
We present a new algorithm that learns a similarity metric and a set of degree-based score functions
that together provide a structure-aware, distance-based method for link prediction.

This method, degree distributional metric learning (DDML) is an extension of structure preserving

metric learning (SPML) [4], both of which, given a set of points in feature space and a graph con-
necting these points, learn a linear feature transform matrix (analogous to a Mahalanobis matrix)
such that a given connectivity algorithm, such as k-nearest neighbors, outputs the original graph.
Such a metric is considered structure preserving, borrowing the idea from structure preserving em-

bedding [5], which embeds nodes without observable feature information, and applying it to the
setting where nodes already have associated features. Many variants of structure preserving embed-
ding are defined by using different connectivity algorithms.

Degree distributional metric learning can be viewed as one such variant, which uses a connectivity
algorithm that maximizes total metric similarity between connected points plus additional feature-
dependent degree preference functions for each node. Maximizing with degree preference functions
generalizes fixed-degree connectivity algorithms such as k-nearest neighbors or b-matching. Fol-
lowing the intuition that the popularity of a node is either reflected or caused by its features, we
allow the features of the node to determine the number of neighbors it prefers to have. The added
complexity of the degree preference functions allows further separation of structural behavior from
pairwise distance-based behavior, and should thus lead to better learned metrics when degree pref-
erence behavior is accurately learned.

Given as input an adjacency matrix A 2 Bn⇥n, and node features X 2 Rd⇥n, DDML learns a
similarity metric, and a degree preference function g : {RD,N} 7! R, which takes a node descriptor
and a candidate degree d and outputs a real valued preference score for that node having degree d.
The degree distributional metric is parameterized by matrices M 2 RD⇥D and S 2 Rn⇥D. The
distance between two points under the metric is defined as DM(xi,xj) = (xi � xj)

>
M(xi � xj).

Using the notation that sc is the 1⇥D dimensional c’th row of S, the degree preference function is
g(xi, d;S) =

Pd
c=1 scxi. The linearity of this parameterization for the degree preference function

is useful for efficient learning, as discussed below. A graph is predicted by finding a connectivity
that maximizes the sum of the similarity between neighbors and the degree preference functions for
each node. The prediction operation computes
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⇤Most of the work described in this abstract was done while all three authors were at Columbia University.
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Table 1: Wikipedia (top), Facebook (bottom) dataset and experiment information. Shown below:
number of nodes n, number of edges |E|, dimensionality d, and AUC performance. The small
Wikipedia categories (*) are ranked by DDML using degree information from the training graph,
and the other data sets are ranked using only the learned distance.

n |E| d Euclid. RTM SVM SPML DDML
Graph Theory 223 917 6695 0.624 0.591 0.610 0.722 0.691*
Philosophy Concepts 303 921 6695 0.705 0.571 0.708 0.707 0.746*
Search Engines 269 332 6695 0.662 0.487 0.611 0.742 0.725*
Philosophy Crawl 100k 4m 7702 0.547 – – 0.601 0.562
Harvard 1937 48k 193 0.764 0.562 0.839 0.854 0.848
MIT 2128 95k 173 0.702 0.494 0.784 0.801 0.797
Stanford 3014 147k 270 0.718 0.532 0.784 0.808 0.810
Columbia 3050 118k 251 0.717 0.519 0.796 0.818 0.821

Prediction function (1) can be efficiently optimized by an augmented maximum weight b-matching
[2]. This, along with the linearity of degree preference function g, yields a cutting-plane algorithm
for learning the parameters based on structured support vector machines (SVMs), but such an al-
gorithm requires iteratively solving a maximum weight b-matching and a quadratic program, which
becomes cumbersome with large input sizes. Instead, the learning objective can be posed as another
form of SVM, which can be efficiently optimized using stochastic subgradient descent, with theo-
retical guarantees that convergence does not depend on the input size [3]. Additionally, limiting the
maximum degree of any node to a fixed constant yields a learning algorithm whose overall running
time is independent of the size of the input.

Extending the experiments done for SPML [4], we compare DDML to a variety of methods for
predicting links from node features: Euclidean distances, relational topic models (RTM) , traditional
support vector machines (SVM), and SPML. Table 1 summarizes the experimental results. DDML’s
performance is always comparable to SPML, and often better.

In summary, DDML is an extension of SPML that learns degree preference functions, which are
used in addition to the learned distances to predict a graph. DDML aims to learn a richer model than
SPML, yet uses a comparable learning algorithm which also can learn from large-scale input. Large-
scale prediction leveraging the full power of the model remains an open problem, since the degree
preference functions introduce dependencies between all nodes, requiring a combinatorial optimiza-
tion to find the maximum-scoring graph. Nevertheless, using only the learned metric or a simple
heuristic for prediction based on the full model yields prediction performance that is comparable to
or better than SPML on some data.
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