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1 Text for Poster

There are many possible goals for network visualiza-

tion algorithms, such as minimizing edge crossings,

bringing neighbors close, pushing away unconnected

nodes, highlighting clusters, and preserving graph dis-

tances. We propose that accurate visualizations of so-

cial networks should preserve the underlying topolog-

ical structure of the network.

Spectral embedding - decompose adjacency matrix

A with an SVD and use eigenvectors with highest

eigenvalues for coordinates.

Laplacian Eigenmaps (Belkin, Niyogi ’02) - form

graph laplacian from adjacency matrix, L = D − A,

apply SVD to L and use eigenvectors with smallest

non-zero eigenvalues for coordinates.

Spring embedding - simulate physical system where

edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which

nodes in a graph are connected, can we learn a set of

low-dimensional coordinates for each node such that

these coordinates can easily be used to reconstruct

the original structure of the network?

Given a network of n nodes represented as a

graph with adjacency matrix A ∈ Bn×n
, SPE finds an

embedding L ∈ Rd×n
such that d is small and running

a connectivity algorithm such as k-nearest neighbors

on L returns A. As first proposed, SPE learns a

matrix K via a semidefinite program (SDP) and then

decomposes K = L�L by performing singular value

decomposition.

Given a connectivity algorithm G (such as k-nearest

neighbors, b-matching, or maximum weight spanning

tree) which accepts as input a kernel K specifying an

embedding and returns an adjacency matrix, we call an

embedding structure preserving if the application of G
to K exactly reproduces the input graph: G(K) = A.

Linear constraints on K enforce that K preserves the

topology of the input adjacency matrix

Define distance and weight in terms of K:

Dij = Kii + Kjj − 2Kij

Wij = −Dij = −Kii −Kjj + 2Kij

G(K) = arg max
Ã

�

ij

WijÃij s.t. Ã ∈ T

k-nearest neighbors

Dij > (1−Aij) max
m

(AimDim)

�-balls blah blah

Dij(Aij −
1

2
) ≤ �(Aij −

1

2
)

maximum weight subgraph method blah blah

When the connectivity algorithm G(K) is a maximum

weight subgraph method such as b-matching:

G(K) = arg max
Ã

�

ij

WijÃij

s.t.

�

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ {0, 1}

the constraints on K to make it structure preserving

cannot be enumerated with a small finite set of lin-

ear inequalities; in fact, there can be an exponential

number of these constraints:

�

ij

WijAij ≥
�

ij

WijÃij s.t Ã ∈ G

L ∈ Rd×n
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Spectral embedding - decompose adjacency matrix

A with an SVD and use eigenvectors with highest

eigenvalues for coordinates.

Laplacian Eigenmaps (Belkin, Niyogi ’02) - form

graph laplacian from adjacency matrix, L = D − A,

apply SVD to L and use eigenvectors with smallest

non-zero eigenvalues for coordinates.

Spring embedding - simulate physical system where

edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which

nodes in a graph are connected, can we learn a set of

low-dimensional coordinates for each node such that

these coordinates can easily be used to reconstruct

the original structure of the network?

Given a network of n nodes represented as a

graph with adjacency matrix A ∈ Bn×n
, SPE finds an

embedding L ∈ Rd×n
such that d is small and running

a connectivity algorithm such as k-nearest neighbors

on L returns A. As first proposed, SPE learns a

matrix K via a semidefinite program (SDP) and then

decomposes K = L�L by performing singular value

decomposition. We propose optimizing L directly

using stochastic gradient descent (SGD).

SPE for greedy nearest-neighbor constraints solves the

following SDP:

max
K∈K

tr(KA)

Dij > (1−Aij) max
m

(AimDim) ∀i,j

where K = {K � 0, tr(K) ≤ 1,
�

ij Kij = 0}

Structure preserving constraints can be written

as a set of matrices S = {C1,C2, ...Cm}, where

each Cl is a constraint matrix corresponding to

a triplet (i, j, k) such that Aij = 1 and Aik = 0.

This set of all triplets clearly subsumes the dis-

tance constraints above, and allows each individual

constraint to be written as tr(ClK) > 0 where

tr(ClK) = Kjj − 2Kij + 2Kik − Kkk. Temporarily

dropping the centering and scaling constraints, we

can now formulate the SDP above as maximizing the

following objective function over L:

f(L) = λtr(L�LA)−
�

l∈S

max(tr(ClL�L), 0).

We will maximize f(L) via projected stochastic sub-

gradient decent. Define the subgradient in terms of a

single randomly chosen triplet:

∆(f(L),Cl) =

�
2L(λA−Cl) if tr(ClL�L) > 0

0 otherwise

and for each randomly chosen triplet constraint Cl, if

tr(ClL�L) > 0 then update L according to:

Lt+1 = Lt + η∆(f(Lt),Cl)

where the step-size η =
1√
t
. After each step, we

can use projection to enforce that tr(L�L) ≤ 1 and�
ij(L

�L)ij = 0, by subtracting the mean from L and

dividing each entry of L by its Frobenius norm.

# of nodes with fewer 
than x impostors

link structure of email correspondence between 
36692 Enron employees

Political Blogs

Structure Preserving 
Embedding (SPE)

Spectral 
Embedding

Normalized
Laplacian Eigenmaps
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Algorithm 1 Large-Scale Structure Preserving Em-
bedding
Require: A ∈ Bn×n, dimensionality d, regularizer

parameter λ, and maximum iterations T
1: Initialize L0 ← rand(d, n)

(or optionally initialize to spectral embedding or
Laplacian eigenmaps solution)

2: t ← 0
3: repeat
4: ηt ← 1√

t+1

5: i ← rand(1 . . . n)
6: j = arg minj � Li − Lj �2 ∀j s.t. A(i, j) = 1
7: C← zeros(n× n)
8: Cjj ← 1, Cij ← −1, Cji ← −1
9: for all k s.t. � Li − Lk �2 < � Li − Lj �2

AND A(i, k) = 0 do
10: Cik ← 1, Cki ← 1, Ckk ← −1
11: end for
12: ∇t ← 2Lt (λA−C)
13: Lt+1 ← Lt + ηt∇t

14: {Subtract out mean}
15: Lt+1 = Lt+1

�Lt+1�2 {Project on to unit sphere}
16: t ← t + 1
17: until t ≥ T
18: return L

The Enron email network embedded into 2D by spec-

tral embedding (left), and SPE-SGD (right). The plot

below shows how many nodes have fewer than x im-

postors. We see that embedding this network into 2D

yields many impostors; however on average nodes in

the SPE embedding have many fewer impostors than

nodes in the spectral embedding.

Given a connectivity algorithm G (such as k-nearest

neighbors, b-matching, or maximum weight spanning

tree) which accepts as input a kernel K = L�L specify-

ing an embedding L and returns an adjacency matrix,

we call an embedding structure preserving if the appli-

cation of G to K exactly reproduces the input graph:

G(K) = A.

Linear constraints on K enforce that K preserves the

topology of the input adjacency matrix

Define distance and weight in terms of K:

Dij = Kii + Kjj − 2Kij

Wij = −Dij = −Kii −Kjj + 2Kij

G(K) = arg max
Ã

�

ij

WijÃij s.t. Ã ∈ T

k-nearest neighbors

Dij > (1−Aij) max
m

(AimDim)

�-balls blah blah

Dij(Aij −
1
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maximum weight subgraph method blah blah

When the connectivity algorithm G(K) is a maximum

weight subgraph method such as b-matching:

G(K) = arg max
Ã

�

ij

WijÃij

s.t.

�

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ {0, 1}

the constraints on K to make it structure preserving

cannot be enumerated with a small finite set of lin-

ear inequalities; in fact, there can be an exponential

number of these constraints:

�

ij

WijAij ≥
�

ij

WijÃij s.t Ã ∈ G

However, we demonstrate a cutting plane approach

such that the exponential enumeration is avoided

and the most violated inequalities are introduced

sequentially.

yields exponential number of constraints of form:

Structure preserving constraints can also benefit

dimensionality reduction algorithms. These methods

similarly find compact coordinates that preserve

certain properties of the input data. Many of these

manifold learning techniques preserve local distances

but not graph topology. We show that adding explicit

topological constraints to these existing algorithms is

crucial for preventing folding and collapsing problems

that occur in dimensionality reduction.
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Impostors
Red nodes incur 
hinge loss violations 
because they are 
impostors of the blue 
nodes neighborhood.
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