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Social Network Visualization as
Low-Dimensional Graph
Embedding

From only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Structure Preserving Embedding
optimized via SDP + SVD

SPE for greedy nearest-neighbor constraints solves the
following SDP:

max tr(KA)
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where K = {K ~ O, tI‘(K) < 172@']’ Kij — O}

Structure Preserving Embedding
optimized via SGD cont.

We will maximize f(L) via projected stochastic sub-
gradient decent. Define the subgradient in terms of a
single randomly chosen triplet:

QL()\A — Cl) if tI’(ClLTL) > ()

0 otherwise

A(f(L), Cr) = {

and for each randomly chosen triplet constraint Cf, if

Visualizing the Enron Email Network

link structure of email correspondence between
36692 Enron employees

tr(C;L"L) > 0 then update L according to:

Liy1 = L + nA(f (L), Ci)
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Structure Preserving Embedding

where the step-size 1 = \/LZ
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After each step, we

can use projection to enforce that tr(L'L) < 1 and
Zij(LTL)ij = 0, by subtracting the mean from L and

~ . : : Spectral SPE-SGD
— . dividing each entry of L by its Frobenius norm. Embeddin
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adjacency matrix for each node . .
X T dxmn As first proposed, SPE learns a matrix K via a
AchB LeR semidefinite program (SDP) and then decomposes Impostors , X 10’

Red nodes incur
hinge loss violations
because they are
iImpostors of the blue

K = L'L by performing singular value decom-
position. We propose optimizing L directly using
stochastic gradient descent (SGD).

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
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Laplacian Eigenmaps (Belkin, Niyogi ’02) - form nodes 11 —— Spectral
graph laplacian from adjacency matrix, £L = D — A, SPE-SGD ‘ A l , | —ISPE
apply SVD to £ and use eigenvectors with smallest SGD 0 2 3 4
non-zero eigenvalues for coordinates. # of nodes x 10*

Spring embedding - simulate physical system where Structure preserving constraints can be written
edges are springs, use Hookes law to compute forces. as a set of matrices S = {Cy,C,,...C,,}, where
each C; is a constraint matrix corresponding to
a triplet (i,7,k) such that A;; = 1 and A;; = 0.
This set of all triplets clearly subsumes the SPE
distance constraints, and allows each individual
constraint to be written as tr(C;K) > 0 where

tr(ClK) — ij — ZKZJ + 2sz — Kkk

Algorithm 1 Large-Scale Structure Preserving Em-
bedding

Require: A € B"*", dimensionality d, regularizer
parameter A, and maximum iterations 7’
1: Initialize Lo < rand(d,n)
(or optionally initialize to spectral embedding or
Laplacian eigenmaps solution)

Political Blogs

link structure of 981 blogs, red is conservative, blue is liberal
reconstruction error shown as percentage

Structure Preserving Constraints

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K = L ' L specify-

2: t+—0
ing an embedding L and returns an adjacency matrix, 3. r;eat
we call an embedding structure preserving if the appli- 4: < 1
cation of G to K exactly reproduces the input graph: 5: o ravrf(;lr(ll n)
K)=A. | 0
G(K) tr(C;K) <0 6: j=argmin; || L;—L;||» ¥; s.t. A(i,j) =1
7. C « zeros(n X n)
Constraintsare | .. — .. &L K.. _9K.. 8 Cjj — 1, Cij — =1, Cji = —1
linear in K 2 i Ty v @ 9: for all k& st. || Ly — Lg |2 < || Li — L; |2
. tr(C;K) > 0 AND A(i,k) =0 do
(2971% ) el (9.281%) |,

10: Cir — 1, Cp; — 1, Cpp — —1

11: end for

(2.854% )

G(K)— k-nearest neighbors:

D.:> (1 — A ) max A ]). 12:  V; < 2L; (AA — C) Spectral Normalized Structure Preserving
() () m\<1limLim : t t ; g :
J ( J) ( ) Temporarily dropping the centering and scaling 13:  Lyyq « Ly + 1.V, Embedding Laplacian Eigenmaps Embedding (SPE)
constraints, we can now formulate the SDP above as 14:  {Subtract out mean}
g(K) — epsilon-balls: maximizing the following objective function over L: 15: Ly = ”IPtH” {Project on to unit sphere}
t+11|2

16: t—t+1
17: until ¢t > T
18: return L

Dij (Am — %) < 6(*’42']' _ %) f(L) = Mr(L'LA) —Zmax(tr(ClLTL),()).
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