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1 Introduction

We propose an adaptation to Structure Preserving
Embedding (SPE) based on stochastic gradient de-
cent that allows for visualization of large social net-
work datasets. SPE finds a low-dimensional repre-
sentation of nodes in a network which is structure-
preserving, meaning a connectivity algorithm such as
k-nearest neighbors will recover the original connec-
tivity pattern of the network exactly from only the co-
ordinates of the nodes in the low-dimensional embed-
ding. There are many possible goals for network visu-
alization algorithms, such as minimizing edge cross-
ings, bringing neighbors close, pushing away uncon-
nected nodes, highlighting clusters, and preserving
graph distances. We propose that accurate visualiza-
tions of social networks should preserve the underly-
ing topological structure of the network. In previous
work, we have presented Structure Preserving Em-
bedding (SPE) [3], an algorithm based on semidefi-
nite programming and singular value decompositions
designed to find such embeddings. In this abstract,
we present a low-rank approximation to the original
algorithm, implemented using a fast custom solver
based on projected stochastic gradient descent, which
allows the technique to scale to larger networks.

2 Algorithm

Given a network of n nodes represented as a graph
with adjacency matrix A ∈ Bn×n, SPE finds an em-
bedding L ∈ Rd×n such that d is small and running
a connectivity algorithm such as k-nearest neighbors
on L returns A. As first proposed, SPE learns a ma-
trix K via a semidefinite program (SDP) and then
decomposes K = L>L by performing singular value
decomposition. In contrast, this article proposes opti-
mizing L directly. Although for d < N , this problem
is now non-convex, because of the stochastic nature
of the optimizer we have found the algorithm does
not suffer from local minima in practice.

SPE for greedy nearest-neighbor constraints solves

the following SDP:

max
K∈K

tr(KA)

Dij > (1−Aij) max
m

(AimDim) ∀i,j

where Dij = Kii + Kjj − 2Kij and K = {K �
0, tr(K) ≤ 1,

∑
ij Kij = 0}. The constraints re-

quire the embedding of each node to be more dis-
tant from its non-neighbors than its neighbors. Let
S = {C1,C2, ...Cm} be the set of all triplet con-
straints, where each Cl is a constraint matrix corre-
sponding to a triplet (i, j, k) such that Aij = 1 and
Aik = 0. This set of all triplets clearly subsumes the
distance constraints above, and allows each individ-
ual constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj − 2Kij + 2Kik − Kkk. Temporarily
dropping the centering and scaling constraints, we
can now formulate the SDP above as maximizing the
following objective function over L:

f(L) = λtr(L>LA)−
∑
l∈S

max(tr(ClL>L), 0).

Note that we have introduced a Lagrange multiplier λ
as an additional parameter which trades-off between
the loss term and regularization term. We will max-
imize f(L) via projected stochastic subgradient de-
cent. Define the subgradient in terms of a single ran-
domly chosen triplet:

∆(f(L),Cl) =

{
2L(λA−Cl) if tr(ClL>L) > 0
0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL>L) > 0 then update L according to:

Lt+1 = Lt + η∆(f(Lt),Cl)

where the step-size η = 1√
t
. After each step, we

can use projection to enforce that tr(L>L) ≤ 1 and∑
ij(L>L)ij = 0, by subtracting the mean from L

and dividing each entry of L by its Frobenius norm.
L is initialized either randomly or from the solution of
spectral embedding or Laplacian eigenmaps [1]. The



(a) Spectral embedding (b) SPE-SGD
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Figure 1: The Enron email network embedded into 2D by spectral embedding (a), and SPE-SGD (b). The
plot on the right shows how many nodes have fewer than x impostors. We see that embedding this network
into 2D yields many impostors; however on average nodes in the SPE embedding have many fewer impostors
than nodes in the spectral embedding.

algorithm terminates when |Lt+1 − Lt| < ε, where ε
is an input parameter.

In practice, instead of optimizing over a single ran-
domly chosen triplet at each iteration, we find it use-
ful to randomly select a node at each iteration, and
use the gradient computed from all impostor triplets,
since it is only for these triplets that a gradient step
is taken. As shown in Figure 2 an impostor is a node
which violates the neighborhood of another node. For
each impostor triplet {i, j, k}, i is the randomly cho-
sen target node, j is the furthest connected neighbor
of i and k is a node unconnected to i but currently
closer than j.

Figure 2: The red nodes are identified as impostors to
the neighborhood of the center node (dark blue), be-
cause the impostors (red) are closer than the furthest
of the connected nodes (light blue).

3 Experiments

In Figure 1 we see two embeddings of the Enron email
network [2]. Each of the 36692 nodes in the net-
work represents a person, and there exist edges be-
tween each pair of people who have communicated
via email. Because of the high degree of many of the
nodes in the network, it is likely impossible to find
a 2D embedding which preserves topology exactly –
meaning all nodes have zero impostors. The network
may require a higher dimensional embedding. How-
ever we see that the 2D visualization produced by
SPE has far fewer impostors than that produced by
spectral embedding, and thus provides a more accu-
rate visualization.
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