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Figure 1. Left: reconstruction performance metrics on synthetic graph 
experiments. Right: True M matrices and learned M matrices .
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Network Prediction with Degree Distributional Metric Learning

DDML M-learning SVM

Diagonal M
Hamming dist. 0.002 0.001 0.025
F1-score 0.990 0.993 0.888

Full M
Hamming dist. 0.009 0.002 0.169
F1-score 0.966 0.991 0.467

Full M,S,T
Hamming dist. 0.020 0.191 0.424
F1-score 0.970 0.698 0.566

Averages

Hamming dist. 0.0103 0.0648 0.2060
F1-score 0.9755 0.8939 0.6405
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• Given information about n nodes, what is a likely network structure?

• An ideal solution should be aware of structure, not just n × n independent

estimates.

• One critical structural measure in networks is the degree distribution, which

has played an important role in many network analyses [1].

• We propose modeling structure using a degree distributional metric :

– A similarity function for pairs of nodes,

– A non-stationary degree preference function dependent on the attributes

of each node:

– E.g., in the LinkedIn network, an individual whose job area is “Software

Sales” is likely to have more connections than an individual whose area is

“Software Programmer”.

• We learn the parameters algorithmically for these functions from training data.

• The similarity function f (xi , xj ;M) = x"i Mxj takes two nodes xi , and xj and

outputs a score, parameterized by matrix M.

• The degree preference function g(xki , b;S) =
∑b

c=1 scx
k
i takes a node xi and

a degree b and outputs a score, parameterized by matrix S.

• Together, the score function for any directed graph encoded with adjacency

matrix A for data matrix X is

F (A|Xk ,M,S,T) =
∑

ij |Aij=1

f (xki , x
k
j ;M)+

∑

i

g



xki ,
∑

j

Ak
ij ;S



 +
∑

j

g

(
xkj ,

∑

i

Ak
ij ;T

)

• Goal: learn parameters M, S, T, that is consistent with a training data.

• Regularize with L2 Frobenius norm, and try to find parameters such that the

true graphs score at least ∆(Ak , Ã) =
∑

ij |Ak
ij #=Ãij

1/(n2k − nk) better than all

possible false graphs.

• Makes this a structural support vector machine (SVM), which is proven to

be efficiently solvable with a cutting-plane method [4]:

– Iteratively add the worst violated constraint (the highest-scoring false

graph), Ãk = argmaxA F (A|X,M,S,T) +∆(Ak ,A)

– Computed using procedure in [3].

– Re-optimize with newly added constraint.

• We compare against two weaker algorithms: vanilla SVM and M-learning :

– SVM receives the element-wise product of node-node pairs and classifies

these according to whether they share and edge or not:

{[xki (1)xkj (1), ... , xki (D)xkj (D)], (Ak)ij},

– M-learning only estimates the similarity parameter M, not leveraging de-

gree information.

• Using randomly sampled node data, we generate graphs under models with

increasing complexity:

– Graphs generated according to inner product of feature vectors (corre-

sponds to SVM),

– graphs generated according to full M matrix (corresponds to M-learning),

– graphs generated according to full M and degree preference functions

(corresponds to full DDML).

• Since DDML generalizes each of the simpler models, it is able to learn nearly

perfectly the true parameters we used to generate graphs, whereas each other

model fails.

• We learn from a set of Wikipedia categories and their interconnections and

try to predict the graphs of new categories.

• For each category, we collected the count of word-occurrences in articles listed

on the main category page and directed links between the articles within each
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• We learn from a set of Wikipedia categories and their interconnections and

try to predict the graphs of new categories.

• For each category, we collected the count of word-occurrences in articles listed

on the main category page and directed links between the articles within each

category. We squash the word counts with the square root function and reduce

dimensionality to 20 by applying non-negative matrix factorization [2].

• We train the algorithms on categories “linear algebra topics”, and “mathe-

matical functions”, and test on “computer science topics”, “data structures”,

and “graph theory topics”.

• DDML predictions produce an average F1-score of 0.1255, M-learning scores

0.0930, and SVM scores 0.0534 and a fully-connected graph scores 0.0561.

• We expect real network data to exhibit some degree distributional behavior,

and modeling data without the flexibility to handle this behavior will yield

inaccurate models.

References
[1] A. Barabási. Linked: The new science of networks. J. Artificial Societies and Social Simulation, 6(2), 2003.

[2] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons. Algorithms and applications for approximate nonnegative matrix factorization.
Computational Statistics & Data Analysis, 52(1):155 – 173, 2007.

[3] B. Huang and T. Jebara. Exact graph structure estimation with degree priors. In ICMLA, pages 111–118, 2009.

[4] T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural svms. Mach. Learning, 77(1):27–59, 2009.

• We learn from a set of Wikipedia categories and their interconnections and

try to predict the graphs of new categories.

• For each category, we collected the count of word-occurrences in articles listed

on the main category page and directed links between the articles within each

category. We squash the word counts with the square root function and reduce

dimensionality to 20 by applying non-negative matrix factorization [2].

• We train the algorithms on categories “linear algebra topics”, and “mathe-

matical functions”, and test on “computer science topics”, “data structures”,

and “graph theory topics”.

• DDML predictions produce an average F1-score of 0.1255, M-learning scores

0.0930, and SVM scores 0.0534 and a fully-connected graph scores 0.0561.

• We expect real network data to exhibit some degree distributional behavior,

and modeling data without the flexibility to handle this behavior will yield

inaccurate models.

References
[1] A. Barabási. Linked: The new science of networks. J. Artificial Societies and Social Simulation, 6(2), 2003.

[2] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons. Algorithms and applications for approximate nonnegative matrix factorization.
Computational Statistics & Data Analysis, 52(1):155 – 173, 2007.

[3] B. Huang and T. Jebara. Exact graph structure estimation with degree priors. In ICMLA, pages 111–118, 2009.

[4] T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural svms. Mach. Learning, 77(1):27–59, 2009.

Figure 2. Convergence of DDML algorithm.

Figure 3. Receiver Order Characteristic curves of 
various algorithms on  Wikipedia lists
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Degree Distributional Metric Learning

Algorithm 1 Degree Distributional Metric Learning.

input {(X1,A1), . . . , (XN ,AN )}, C
1: Initialize M,S,T {e.g., M ← I and S,T ← [0]}
2: Constraint set C ← ∅ {or optionally add concavity constraints)}
3: repeat
4: (M,S,T, ξ) ← argminM,S,T,ξ≥0

1
2 (||M||+ ||S||+ ||T||) + Cξ s.t. C

5: (Optional) Project M onto PSD cone
6: for k = 1 to N do
7: Ãk ← argmaxA F (A|X,M,S,T) +∆(Ak,A)
8: end for
9: C ← C ∪ 1

N

∑N
k=1

[
F (Ak|Xk,M,S,T)− F (Ãk|Xk,M,S,T)

]
≥ 1

N

∑N
k=1 ∆(Ak, Ã)− ξ

10: until 1
N

∑N
k=1 ∆(Ak, Ã)− 1

N

∑N
k=1

[
F (Ak|Xk,M,S,T)− F (Ãk|Xk,M,S,T)

]
< ε+ ξ

and out-degree of each node. The prediction operation
computes

argmax
A

F (A|X,M,S,T), (1)

where

F (A|Xk,M,S,T) =

∑

ij|Aij=1

f(xk
i ,x

k
j ;M) +

∑

i

g



xk
i ,
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j

Ak
ij ;S





+
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j

g

(
xk
j ,
∑

i

Ak
ij ;T

)
.

This parameterization allows us to recover the graph
connectivity with maximum neighbor similarity and
degree preference efficiently via a special construction
that converts the necessary optimizations above into a
maximum weight b-matching problem (?). The con-
struction uses the similarity scores as edge weights
between each primary node and augments the graph
with auxiliary edges to encode the degree functions.
In this case, each component of the degree prefer-
ence function becomes the weight of an auxiliary edge
in the augmented graph. Furthermore, we represent
edge-directness by making a copy of each of the pri-
mary nodes of the graph and creating a bipartite graph
with one bipartition representing incoming edges and
the other representing outgoing edges. One limita-
tion of this augmented b-matching solver is that the
degree preference functions must be concave, mean-
ing that the change in preference score for increasing
degree must decrease. Assume that function g is con-
cave (we will address this assumption later). Specif-
ically, we create a primary weight matrix WX , and
auxiliary weight matrices WS and WT , representing
out-degree and in-degree respectively. We assign pri-
mary edge weights according to the similarity func-
tion f , WX

ij = f(xi,xj ;M). Assign auxiliary edge

weights according to the additive components of the
degree preference function g, which, for a degree of d,
are computed via the dot product of the d’th row of
the parameter matrix S (or T) and the node descrip-
tor, WS

id = scxi, and similarly with the auxiliary edge
weights WT for in-degree. The augmented weight ma-
trix is

W =

[
WX WS

(WT )" 0

]
.

This weight matrix encodes the edge weights of a bi-
partite graph, where rows represent a bipartition cor-
responding to outbound edges and columns represent
the other bipartition corresponding to inbound edges.
The first nk rows and columns of the weight matrix
represent the primary nodes of the original graph, and
the remaining rows and columns represent the aux-
iliary nodes that encode the degree preference func-
tions. Solving for a subgraph where each of the pri-
mary nodes has nk neighbors and the auxiliary nodes
are free to choose any number of neighbors equiva-
lently solves the maximization in Equation (??) (?).
In particular, the optimization returns an augmented
adjacency matrix B̂ via

B̂ = argmax
B∈Bnk×nk

∑

ij

BijWij (2)

s.t.
2nk∑

j=1

Bij = nk, for 1 ≤ i ≤ nk

2nk∑

i=1

Bij = nk, for 1 ≤ j ≤ nk.

This matrix contains the desired primary adjacency
matrix A in its upper left quadrant. One useful fact
about any resulting B matrix is that, due to the con-
cavity of the degree preference function, the resulting
monotonically decreasing auxiliary weights, and the
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estimates.
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• Goal: learn parameters M, S, T that are consistent with a training data.

• Regularize with L2 Frobenius norm, and try to find parameters such that the

true graphs score at least ∆(Ak , Ã) =
∑

ij |Ak
ij #=Ãij

1/(n2
k − nk) better than all

possible false graphs.

• The optimization is a form of a structural support vector machine (SVM),

which is proven to be efficiently solvable with a cutting-plane method [4]:

– Iteratively add the worst violated constraint (the highest-scoring false

graph), Ãk = argmaxA F (A|X,M,S,T) + ∆(Ak ,A)

– Computed using procedure in [3].

– Re-optimize with newly added constraint.

• We compare against two weaker algorithms: vanilla SVM and M-learning :

– SVM receives the element-wise product of node-node pairs and classifies

these according to whether they share and edge or not:

{[xk
i (1)x

k
j (1), ... , x

k
i (D)xk

j (D)], (Ak)ij},

– M-learning only estimates the similarity parameter M, not leveraging de-

gree information.

• Using randomly sampled node data, we generate graphs under models with

increasing complexity:

– Graphs generated according to inner product of feature vectors (corre-

sponds to SVM),

– graphs generated according to full M matrix (corresponds to M-learning),

– graphs generated according to full M and degree preference functions

(corresponds to full DDML).

• Since DDML generalizes each of the simpler models, it is able to learn nearly

perfectly the true parameters we used to generate graphs, whereas each other

model fails.

• We have developed an alternate learning algorithm that uses stochastic gra-

dient descent to optimize the objective instead of cutting-plane.

– This variant proves theoretical guarantees that the running time to a cer-

tain solution-quality does not depend on the size of the input.

– Stochastic strategy. Iterate:

∗ Find a random triplet of nodes:

(1) any node, (2) its neighbor, and (3) a disconnected node.

∗ If swapping the edge to the true neighbor (1 to 2) with an edge to the

disconnected node (1 to 3) scores higher using the current parameters,

take a small gradient step in the direction of the violation.

– Running on a Wikipedia lists, we obtain a solution in minutes of compu-

tation time on a consumer computer.

• We expect large-scale, real network data to exhibit some non-stationary de-

gree distributional behavior, and this work provides a principled way of mod-

eling the relationship between node attributes and degree distributions.
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Figure 4. ROC results using stochastic DDML.

• We have developed an alternate learning algorithm that uses stochastic gra-

dient descent to optimize the objective instead of cutting-plane.

– This variant proves theoretical guarantees that the running time to a cer-

tain solution-quality does not depend on the size of the input.

– Stochastic strategy. Iterate:

∗ Find a random triplet of nodes:

(1) any node, (2) its neighbor, and (3) a disconnected node.

∗ If swapping the edge to the true neighbor (1 to 2) with an edge to the

disconnected node (1 to 3) scores higher using the current parameters,

take a small gradient step in the direction of the violation.

– Running on a Wikipedia lists, we obtain a solution in minutes of compu-

tation time on a consumer computer.

• We plan to run stochastic DDML on massive-scale networks (e.g., the full

Wikipedia set), exploiting the independence of running time on network size,

and learn models of node distance and degree likelihood for graphs.
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