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Introduction

SPE is a graph embedding algorithm

A

SPE C -

Input: binary Output: point
adjacency matrix ~ coordinates for each node
A € BNXN 7, eRY fori=1,...,N



Graph Embedding

® Many different objectives for graph embedding
[Chung '97][Battista et al.’99]

® Planarity - drawing graphs such that edges
never cross, possible for some graphs in 2D,
possible for all in 3D

® Approximating NP-hard sparsest cut
problem [Arora *04]

® Our focus: visualization and compression

® Real-world data from observing binary interactions, e.g.
links between websites, and synthetic data such as
interesting classical graphs

3



Graph Embedding

® Spring embedding - simulate physical system where
edges are springs, use Hooke’s law to compute forces,
converges to local optimium

® Spectral embedding - decompose adjacency matrix A
with an SVD and use eigenvectors with highest eigenvalues
for coordinates

® |aplacian eigenmaps [Belkin, Niyogi '02] - form graph
laplacian from adjacency matrix, L =D — A ,apply SVD to L
and use eigenvectors with smallest non-zero eigenvalues
for coordinates



Structure Preserving Embedding

|. SDP to learn an embedding K from A

® |inear constraints on K preserve the global
topology of the input graph

® Convex objective favors low-rank K close to
the spectral solution, ensuring low-dimensional
embedding

2. Use eigenvectors of K with largest eigenvalues as
coordinates for each node

® Similar to MVU and MVE
[Weinberger et al.’05] [Shaw, Jebara ’07]
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Low-Rank Objective

® | ow-rank K corresponds to low-dimensional
embedding

SPE objective:

max tr(/KA)
KeK

K={K =0,tr(K) < 1727;]' K;; =0}

4 )
Lemma 1. The objective function maxgsqtr(KA)
subject to tr(K) < 1 recovers a low-rank version of
spectral embedding.

\—)

® Proof in paper/poster



Preserving Structure

A connectivity algorithm G( K ') such as k-nearest
neighbors should be able to recover the edges from
the coordinates such that G(K) = A
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Preserving Graph Topology

G(K) Linear constraints on K
k-nearest neighbors D;; > (1 —A;;) max(AimDim)
1 1
€ -neighborhoods D;j(Asj — 5) < e(Aij — 5)

Distance is linear function of K
Dij — Kw ij — QKZ]

Constraints prevent blue nodes
from invading the neighborhood
of the red node
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Structure Preserving Embedding

Input | A € BV*YN connectivity algorithm G,
and parameter C.

Step 1 | Solve SDP K = arg maxgcx tr(KA) — C¢
S.T. Dij > (1 — A@j) maXm(AimDim) —§

Step 2 | Apply SVD to K and use the top
eigenvectors as embedding coordinates




Preserving Graph Topology

G(K) Linear constraints on K

b-matching or max- 27
weight spanning tree o

b-matching:
Q(K) — argimax x Zij Wiinj S.T. Z - Az’j :bi, Ai]‘ :Aﬁ', Am :O, Az‘j ~ {O, 1}

J

max weight spanning tree:
Q(K) = argmz}XZWiinj S.t. A cT
A

i
Weight is linear function of K
W@" — _Dz’j — _Kii — ij -+ QKZJ
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Preserving Graph Topology

G(K) Linear constraints on K

b-matching or max- Z WiiAi; > Z Wijflz-j st Aeg
ij ij

weight spanning tree

® Exponential number of constraints of this form

® Use cutting-plane technique to avoid enumeration,
similar to SVM-struct [Finley, Joachims '08]

® |terate SDP adding worst violating constraint at
each iteration



Structure Preserving Embedding

Input | A € BY*Y, connectivity algorithm G,
and parameters C, €.

Step 1 | Solve SDP

K = arg maxp cic tr(KA) — C¢.

Step 2 | Use G, K to find biggest violator

A = argmaxy tr(WA)

Step 3 | If [tr(WA) — tr(WA)| > ¢, add constraint
tr(WA) — tr(WA) > A(A,A) — € and go
to Step 1

Step 4 | Apply SVD to K and use the top
eigenvectors as embedding coordinates




Implementation

e MATLAB

® Using CSDP and SDP-LR [Borchers *99][Burer, Monteiro *03]

® Complexity similar to SDPs for dimensionality
reduction

O(N*® + C?) where C is the number of
constraints

Many inactive constraints, working-set method
SDP-LR takes advantage of low-rank objective

Run on graphs with up to 1000 nodes
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Experiments

Classical graphs
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Experiments
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Experiments
Political blogs

Link structure between 981 political blogs
Red is conservative, blue is liberal, reconstruction error shown as %

L j C 2.971% ) d ( 9.981% ) I. ( > 8549 )

Spectral Normalized Structure Preserving
Embedding Laplacian Eigenmaps Embedding (SPE)
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Dimensionality Reduction

® SPE is similar to manifold-learning methods for

dimensionality reduction such as LLE, MVU, MVE
[Roweis, Saul ’05] [Weinberger et. al '05] [Shaw, Jebara '07]

® These methods preserve pairwise distances
between datapoints

® Adding topology-preserving constraints yields
more accurate embeddings, prevents collapsing
parts of the underlying manifold

AR B8 <R

Original MVU and MVE MVE+SP
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Dimensionality Reduction

MVU obijective MVE objective
d N
K o .
(I R 2 N 2 M
1=1 1=d+1
( K>0 ‘
Ko =0
K= VK e RVN | 223 Big

< Ko+ Kjj — Ky — Kji = Wiy + Wy = Wi, — Wy, (
L \V/i,j S.t. Aij = )

For nearest-neighbor graphs

K+ Kjj — Kijj — Ky > (1— Az’j) max(Aim (Kii + Kmm — Kim — Kng)) Vi

m

For maximum-weight graphs

Z(—Kn‘ — Kjj + Kij + Kj;) Ay — Z<_Kzz — Kjj + K;j + Kj;)Aij > AN(A, A) — €95

1] 1]
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Experiments

® [-nearest-neighbor classifier on UC| datasets

® Compare using 2 dimensions per point vs. using
all dimensions

Accuracy % of 1NN classifier

KPCA MVU MVE MVE+SP | All-Dimensions
Tonosphere 66.0% 85.0% 81.2% 87.1% 78.8%
Cars 66.1% 70.1% T71.6% 78.1% 79.3%
Dermatology 58.8%  63.6% 64.8% 66.3% 76.3%
Ecoli 94.9%  95.6% 94.8% 96.0% 95.6%
Wine 68.0% 68.5% 68.3% 69.7% 71.5%
OptDigits 4 vs. 9  94.4%  99.2%  99.6% 99.8% 98.6%
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Conclusion

® SPE finds low-dimensional representations of
graphs that implicitly preserve topology

® Preserving local distances is insufficient for
faithfully embedding graphs in low-dimensional
space, need to preserve graph topology

24



