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Output: point 
coordinates for each node

SPE is a graph embedding algorithm

Input: binary 
adjacency matrix

!yi ∈ Rd for i = 1, . . . , NA ∈ BN×N

Introduction
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Applications
Graph Embedding

• Many different objectives for graph embedding 
[Chung ’97][Battista et al. ’99]

• Planarity - drawing graphs such that edges 
never cross, possible for some graphs in 2D, 
possible for all in 3D

• Approximating NP-hard sparsest cut 
problem [Arora ’04] 

• Our focus: visualization and compression

• Real-world data from observing binary interactions, e.g. 
links between websites, and synthetic data such as 
interesting classical graphs
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Background
Graph Embedding

• Spring embedding - simulate physical system where 
edges are springs, use Hooke’s law to compute forces, 
converges to local optimium

• Spectral embedding - decompose adjacency matrix 
with an SVD and use eigenvectors with highest eigenvalues 
for coordinates

• Laplacian eigenmaps [Belkin, Niyogi ’02] - form graph 
laplacian from adjacency matrix,                 , apply SVD to    
and use eigenvectors with smallest non-zero eigenvalues 
for coordinates
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SDP & SVD
Structure Preserving Embedding

1. SDP to learn an embedding     from  

• Linear constraints on     preserve the global 
topology of the input graph

• Convex objective favors low-rank    close to 
the spectral solution, ensuring low-dimensional 
embedding

2. Use eigenvectors of     with largest eigenvalues as 
coordinates for each node

• Similar to MVU and MVE                               
[Weinberger et al. ‘05] [Shaw, Jebara ’07]
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Möbius Ladder Graph
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Spectral Embedding

Möbius BandMöbius Ladder 

Graph
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• Introduction
• Applications, background, SDP + SVD, Möbius example

• Structure Preserving Embedding
• A low-rank objective

• Graph topology from linear constraints

• Algorithm details, implementation

• Experiments
• Classical graphs, molecules, political blogs

• Dimensionality Reduction
• Review

Outline
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• Low-rank     corresponds to low-dimensional 
embedding

• Proof in paper/poster

Low-Rank Objective
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K

max
K∈K

tr(KA)

K = {K ! 0, tr(K) ≤ 1,
∑

ij Kij = 0}

Structure Preserving Embedding

Structure

Preserving 

Embedding 

(SPE)

Spectral 

Embedding

Tesseract Celmins Swart SnarkMöbius Ladder Balaban 10-cage

Figure 2. Classical graphs embedded with spectral embedding (above), and SPE w/ kNN (below). Eigenspectra are shown
to the right. SPE finds a small number of dimensions that highlight many of the symmetries of these graphs.

norm of K to avoid the objective function from grow-
ing unboundedly. We claim that this objective func-
tion attempts to recover a low-rank version of spectral
embedding.
Lemma 1. The objective function maxK!0 tr(KA)
subject to tr(K) ≤ 1 recovers a low-rank version of
spectral embedding.

Proof. Rewrite the matrices in terms of the eigende-
composition of the positive semidefinite matrix K =
UΛUT and the symmetric matrix A = V Λ̃V T , and
insert into the objective function:

max
K!0

tr(KA) = max
Λ∈L,U∈O

tr(UΛUT V Λ̃V T )

where L is the set of positive semidefinite diagonal
matrices and O is the set of orthonormal matrices also
known as the Stiefel manifold. By Von Neumann’s
lemma, we have:

max
U∈O

tr(UΛUT V Λ̃V T ) = λT λ̃.

Here λ is a vector containing the diagonal entries of
Λ in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λn and λ̃ is a
vector containing the diagonal entries of Λ̃ in decreas-
ing order, i.e. λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n. Therefore, the full
optimization problem can be rewritten in terms of an
optimization over non-negative eigenvalues

max
K!0,tr(K)≤1

tr(KA) = max
λ≥0,λT 1≤1

λT λ̃

where we also have to satisfy λT 1 ≤ 1 since tr(K) ≤ 1.
To maximize the objective function λT λ̃ we simply set
λ1 = 1 and the remaining λi = 0 for i = 2, . . . , n which
produces the maximum λ̃1, the top eigenvalue of the
spectral embedding

max
K!0,tr(K)≤1

tr(KA) = λ̃1.

Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into

the top eigenvalue. The (rank 1) solution must be
K = vvT where v is the leading eigenvector of A. If
there are ties in A for its top eigenvalues, K is a conic
combination of the top eigenvectors of A which is a
low rank solution and has rank at most equal to the
multiplicity of the top eigenvalue of A.

In summary, this objective function will attempt to
mimic the traditional spectral embedding of a graph.
By combining this objective with the linear constraints
from the previous section, it will be possible to also
correct the embedding such that the graph structure
in A is preserved and can be reconstructed from the
embedding by using a connectivity algorithm G.

4. Algorithm

In this section, the convex objective function is com-
bined with the linear constraints implied by the con-
nectivity algorithm G, be it knn, maximum weight b-
matching or a maximum weight spanning tree. All
share the same objective function and some common
constraints K = {K # 0, tr(K) ≤ 1,

∑
ij Kij = 0, ξ ≥

0} to limit the trace norm of K and to center K such
that the embeddings are centered on the origin. The
objective function becomes maxK∈K tr(KA) − Cξ.
Note that the function involves an additional term Cξ
which uses a manually specified parameter C. This
allows some violations of the constraints on K given
by the choice of algorithm G, as shown in Figure 3.
All linear inequalities encountered from structure pre-
serving constraints are slackened with a large C weight
to allow a few violations if necessary. The use of a fi-
nite C assures a solution to the SDP is always possible
and helps avoid numerical problems and also encour-
ages faster convergence of cutting plane methods as
discussed in (Finley & Joachims, 2008).

For graphs created from greedy algorithms such as k-
nearest neighbors, Table 1 outlines the corresponding
SPE procedure.

SPE objective:



Preserving Structure

A connectivity algorithm          such as k-nearest 
neighbors should be able to recover the edges from 
the coordinates such that 
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Edges Points

G(K)

G(K) = A

Embedding

Connectivity             G(K)



Linear constraints on 

k-nearest neighbors

-neighborhoods

Using linear constraints
Preserving Graph Topology

Dij = Kii + Kjj − 2Kij

Dij > (1−Aij) max
m

(AimDim)

Dij(Aij −
1
2
) ≤ ε(Aij −

1
2
)
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ε

Distance is linear function of K

KG(K)

Constraints prevent blue nodes 
from invading the neighborhood 

of the red node



Algorithm for nearest-neighbor graphs
Structure Preserving Embedding

Structure Preserving Embedding

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0

Figure 3. By adjusting the input paramter C, SPE is able to handle noisy graphs. From left to right, we see a perfect
ring graph embedded by SPE, a noisy line added to the graph at random , and then the results of using SPE on the noisy
graph with C roughly set to 1000, 5, 2, and 1. Note when C is small, SPE reproduces the rank-1 spectral embedding.

Table 1. Structure Preserving Embedding algorithm for k-
nearest neighbor constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameter C.

Step 1 Solve SDP K̃ = arg maxK∈K tr(KA)− Cξ
s.t. Dij > (1−Aij) maxm(AimDim)− ξ

Step 2 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

For maximum weight subgraph constraints, there of-
ten exists an exponential number of constraints of the
form:

tr(WA)− tr(WÃ) ≥ $(Ã,A)− ξ ∀Ã ∈ G

where $(Ã, A) = 1
N2

∑
ij |Ãij−Aij |, and Ã ∈ G states

that Ã is in the family of graphs formed by a con-
nectivity algorithm G, such as b-matchings or trees.
To avoid enumerating the exponential number of con-
straints, we start by running the optimization without
any structure preserving constraints and then add the
most violated constraint at each iteration. Given a
learned kernel K̃ from the previous iteration, we find
the most violated constraint by computing the con-
nectivity Ã that maximizes tr(W̃Ã) s.t. Ã ∈ G using a
maximum weight subgraph method. We then add the
constraint to our optimization (tr(WA) − tr(WÃ)) ≥
$(Ã,A) − ξ. The first iteration yields a rank-1 so-
lution, which typically violates many constraints, but
after several iterations, the algorithm converges when
|tr(W̃Ã)−tr(W̃A)| ≤ ε, where ε is an input parameter.
Table 2 summarizes the cutting-plane version of SPE.

SPE is implemented in MATLAB as a Semidefinite
Program using CSDP and SDP-LR (Burer & Mon-
teiro, 2003) and has complexity similar to other dimen-
sionality reduction SDPs such as Semidefinite Embed-
ding. The complexity is O(N3+C3) (Weinberger et al.,
2005) where C denotes the number of constraints (for
the k-nearest neighbor constraints we typically have
C ∝ |E|). However, in practice many constraints are
inactive and working set methods (now common prac-
tice for SDPs) perform well. Furthermore, SDP-LR
directly exploits the low-rank properties of our objec-
tive function. We have run SPE on graphs with over
thousands of nodes and tens of thousands of edges. For

Table 2. Structure Preserving Embedding algorithm with
cutting-plane constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameters C, ε.

Step 1 Solve SDP
K̃ = arg maxK∈K tr(KA)− Cξ.

Step 2 Use G, K̃ to find biggest violator
Ã = arg maxA tr(W̃A).

Step 3 If |tr(W̃Ã)− tr(W̃A)| > ε, add constraint
tr(WA)− tr(WÃ) ≥ $(Ã,A)− ξ and go
to Step 1

Step 4 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

the cutting plane formulation, we add constraints it-
eratively, and it can be shown that the algorithm will
converge in polynomial time for quadratic programs
with linear constraints (Finley & Joachims, 2008).
Since we have a semidefinite program, these guarantees
do not carry over immediately, although in practice
the cutting plane algorithm works well and has also
been successfully deployed in settings beyond struc-
tured prediction and quadratic programming (Sontag
& Jaakkola, 2008).

5. Experiments

We present visualization results on a variety of syn-
thetic and real-world datasets, highlighting the im-
provements of SPE over purely spectral methods. Fig-
ure 2 shows a variety of classical graphs visualized by
spectral embedding and SPE. Note that spectral em-
bedding typically finds many eigenvectors with dom-
inant eigenvalues, and thus needs many more coordi-
nates for accurate visualization, as compared to SPE
which finds compact and accurate embeddings. Fig-
ure 4 shows an embedding of two organic compounds.
The true physical embedding in 3D space is shown on
the left. Given only connectivity information SPE is
able to produce coordinates for each atom that bet-
ter resemble the true physical coordinates. Figure 5
shows a visualization of 981 political blogs (Adamic &
Glance, 2005). The eigenspectrum shown next to each
embedding reveals that both spectral embedding and
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Using linear constraints
Preserving Graph Topology
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b-matching:

G(K) = arg max
Ã

∑

ij

WijÃij s.t. Ã ∈ T
max weight spanning tree:

Weight is linear function of K

Linear constraints on 

b-matching or max-
weight spanning tree

KG(K)

???

Wij = −Dij = −Kii −Kjj + 2Kij

G(K) = argmaxÃ

∑
ij WijÃij s.t.

∑
j Ãij =bi, Ãij =Ãji, Ãii =0, Ãij ∈{0, 1}



Using linear constraints
Preserving Graph Topology
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Linear constraints on 

b-matching or max-
weight spanning tree

KG(K)
∑

ij

WijAij ≥
∑

ij

WijÃij s.t Ã ∈ G

• Exponential number of constraints of this form 

• Use cutting-plane technique to avoid enumeration, 
similar to SVM-struct [Finley, Joachims ’08]

• Iterate SDP adding worst violating constraint at 
each iteration



Algorithm for maximum-weight subgraphs
Structure Preserving Embedding

Structure Preserving Embedding

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0

Figure 3. By adjusting the input paramter C, SPE is able to handle noisy graphs. From left to right, we see a perfect
ring graph embedded by SPE, a noisy line added to the graph at random , and then the results of using SPE on the noisy
graph with C roughly set to 1000, 5, 2, and 1. Note when C is small, SPE reproduces the rank-1 spectral embedding.

Table 1. Structure Preserving Embedding algorithm for k-
nearest neighbor constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameter C.

Step 1 Solve SDP K̃ = arg maxK∈K tr(KA)− Cξ
s.t. Dij > (1−Aij) maxm(AimDim)− ξ

Step 2 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

For maximum weight subgraph constraints, there of-
ten exists an exponential number of constraints of the
form:

tr(WA)− tr(WÃ) ≥ $(Ã,A)− ξ ∀Ã ∈ G

where $(Ã, A) = 1
N2

∑
ij |Ãij−Aij |, and Ã ∈ G states

that Ã is in the family of graphs formed by a con-
nectivity algorithm G, such as b-matchings or trees.
To avoid enumerating the exponential number of con-
straints, we start by running the optimization without
any structure preserving constraints and then add the
most violated constraint at each iteration. Given a
learned kernel K̃ from the previous iteration, we find
the most violated constraint by computing the con-
nectivity Ã that maximizes tr(W̃Ã) s.t. Ã ∈ G using a
maximum weight subgraph method. We then add the
constraint to our optimization (tr(WA) − tr(WÃ)) ≥
$(Ã,A) − ξ. The first iteration yields a rank-1 so-
lution, which typically violates many constraints, but
after several iterations, the algorithm converges when
|tr(W̃Ã)−tr(W̃A)| ≤ ε, where ε is an input parameter.
Table 2 summarizes the cutting-plane version of SPE.

SPE is implemented in MATLAB as a Semidefinite
Program using CSDP and SDP-LR (Burer & Mon-
teiro, 2003) and has complexity similar to other dimen-
sionality reduction SDPs such as Semidefinite Embed-
ding. The complexity is O(N3+C3) (Weinberger et al.,
2005) where C denotes the number of constraints (for
the k-nearest neighbor constraints we typically have
C ∝ |E|). However, in practice many constraints are
inactive and working set methods (now common prac-
tice for SDPs) perform well. Furthermore, SDP-LR
directly exploits the low-rank properties of our objec-
tive function. We have run SPE on graphs with over
thousands of nodes and tens of thousands of edges. For

Table 2. Structure Preserving Embedding algorithm with
cutting-plane constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameters C, ε.

Step 1 Solve SDP
K̃ = arg maxK∈K tr(KA)− Cξ.

Step 2 Use G, K̃ to find biggest violator
Ã = arg maxA tr(W̃A).

Step 3 If |tr(W̃Ã)− tr(W̃A)| > ε, add constraint
tr(WA)− tr(WÃ) ≥ $(Ã,A)− ξ and go
to Step 1

Step 4 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

the cutting plane formulation, we add constraints it-
eratively, and it can be shown that the algorithm will
converge in polynomial time for quadratic programs
with linear constraints (Finley & Joachims, 2008).
Since we have a semidefinite program, these guarantees
do not carry over immediately, although in practice
the cutting plane algorithm works well and has also
been successfully deployed in settings beyond struc-
tured prediction and quadratic programming (Sontag
& Jaakkola, 2008).

5. Experiments

We present visualization results on a variety of syn-
thetic and real-world datasets, highlighting the im-
provements of SPE over purely spectral methods. Fig-
ure 2 shows a variety of classical graphs visualized by
spectral embedding and SPE. Note that spectral em-
bedding typically finds many eigenvectors with dom-
inant eigenvalues, and thus needs many more coordi-
nates for accurate visualization, as compared to SPE
which finds compact and accurate embeddings. Fig-
ure 4 shows an embedding of two organic compounds.
The true physical embedding in 3D space is shown on
the left. Given only connectivity information SPE is
able to produce coordinates for each atom that bet-
ter resemble the true physical coordinates. Figure 5
shows a visualization of 981 political blogs (Adamic &
Glance, 2005). The eigenspectrum shown next to each
embedding reveals that both spectral embedding and
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Implementation
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• MATLAB

• Using CSDP and SDP-LR [Borchers ’99][Burer, Monteiro ’03]

• Complexity similar to SDPs for dimensionality 
reduction

•                     where     is the number of 
constraints 

• Many inactive constraints, working-set method

• SDP-LR takes advantage of low-rank objective

• Run on graphs with up to 1000 nodes

O(N3 + C3) C



• Introduction to graph embedding
• Applications, background, SDP + SVD, Möbius example

• Structure Preserving Embedding
• Graph topology as linear constraints

• A low-rank objective

• Algorithm details, implementation

• Experiments
• Classical graphs, molecules, political blogs

• Dimensionality Reduction
• Review

Outline
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Classical graphs
Experiments
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Classical graphs
Experiments
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(SPE)
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Molecules
Experiments
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Laplacian 

Eigenmaps

Structure Preserving

Embedding (SPE)
Spectral Embedding

Molecule TR012 

Molecule TR015 Normalized

Laplacian 

Eigenmaps



Political blogs
Experiments
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Structure Preserving 
Embedding (SPE)

Spectral 
Embedding

Normalized
Laplacian Eigenmaps

2.854%2.971% 9.281%

Link structure between 981 political blogs
Red is conservative, blue is liberal, reconstruction error shown as %



Preserving distances and graph topology

• SPE is similar to manifold-learning methods for 
dimensionality reduction such as LLE, MVU, MVE 
[Roweis, Saul ’05] [Weinberger et. al ’05] [Shaw, Jebara ’07]

• These methods preserve pairwise distances 
between datapoints

• Adding topology-preserving constraints yields 
more accurate embeddings, prevents collapsing 
parts of the underlying manifold

Dimensionality Reduction
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Preserving distances and graph topology
Dimensionality Reduction
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K =





∀K ∈ RN×N

∣∣∣∣∣∣∣∣

K # 0∑
ij Kij = 0

Kii + Kjj −Kij −Kji = Wii + Wjj −Wij −Wji

∀i,j s.t. Aij = 1






max
K∈K

d∑

i=1

λi −
N∑

i=d+1

λimax
K∈K

tr(K)

MVU objective MVE objective

Kii + Kjj −Kij −Kji > (1−Aij) max
m

(Aim(Kii + Kmm −Kim −Kmi)) ∀i,j

For nearest-neighbor graphs

∑

ij

(−Kii −Kjj + Kij + Kji)Aij −
∑

ij

(−Kii −Kjj + Kij + Kji)Ãij ≥ #(Ã, A)− ξ∀i,j

For maximum-weight graphs



MVE+SP
Experiments
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• 1-nearest-neighbor classifier on UCI datasets

• Compare using 2 dimensions per point vs. using 
all dimensionsStructure Preserving Embedding

Table 3. Average classification accuracy of a 1-nearest neighbor classifier on UCI datasets. MVE+SP has higher accuracy
than other low-dimensional methods and also beats All-dimensions on Ionosphere, Ecoli, and OptDigits. Other class pairs
for OptDigits are not shown since all methods achieved near 100% accuracy.

KPCA MVU MVE MVE+SP All-Dimensions
Ionosphere 66.0% 85.0% 81.2% 87.1% 78.8%
Cars 66.1% 70.1% 71.6% 78.1% 79.3%
Dermatology 58.8% 63.6% 64.8% 66.3% 76.3%
Ecoli 94.9% 95.6% 94.8% 96.0% 95.6%
Wine 68.0% 68.5% 68.3% 69.7% 71.5%
OptDigits 4 vs. 9 94.4% 99.2% 99.6% 99.8% 98.6%

ality d is reduced (for instance using the approach of
MVE+SP), the finite-sample risk should more quickly
approach the infinite sample risk. This makes it is pos-
sible to more accurately use training performance on
low-dimensional k-nearest neighbor graphs to estimate
test performance.

7. Conclusion

This article suggests that preserving local distances or
using spectral methods is insufficient for faithfully em-
bedding graphs in low-dimensional space, and demon-
strates the improvements of SPE over current graph
embedding algorithms in terms of both the quality of
the resulting visualizations as well as the amount of
information compression. SPE allows us to accurately
visualize many interesting network structures ranging
from classical graphs, to organic compounds, to the
link structure between websites, using relatively few
dimensions. Furthermore, by incorporating structure
preserving constraints into existing nonlinear dimen-
sionality reduction algorithms, these methods can ex-
plicitly preserve graph topology in addition to local
distances, and produce more accurate low-dimensional
embeddings.
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Conclusion

• SPE finds low-dimensional representations of 
graphs that implicitly preserve topology

• Preserving local distances is insufficient for 
faithfully embedding graphs in low-dimensional 
space, need to preserve graph topology
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