
Structure Preserving Embedding Blake Shaw
Tony Jebara 

Columbia University

Introduction The Algorithm Results
Graph Embedding from 
Connectivity information

Embedding the Möbius Ladder

Spectral Embedding

Möbius Band

Two Spring Embeddings

SPE 
Embedding

Structure Preserving Embedding

Structure Preserving Constraints

Low-rank Objective

Algorithm Overview

Adjacency Matrix

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
Spectral Embedding and Spring Embedding do not
explicitly preserve structure according to our defini-
tion and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

The goal of SPE is to find a low-dimensional
structure preserving embedding of an input graph in
Euclidean space. The embedding can be represented
as a positive semi-definite kernel matrix K ∈ RN2

which specifies all pairwise affinities between nodes,
and by means of applying Kernel Principal Compo-
nent Analysis (KPCA) to K, specifies a unique set of
coordinates for each node !yi ∈ Rd for i = 1, . . . , N .
Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input an embedding and re-
turns an adjacency matrix, an embedding is structure
preserving if when the embedding is processed by the
connectivity algorithm G, the result is exactly the
input graph: G(K) = AK = A.

When the connectivity algorithm G(K) is a greedy
algorithm such as k-nearest neighbors, we require that
for each node that the distances to all other nodes
to which it is not connected must be larger than the
distance to the furthest connected neighbor of that
node:

Dij > (1−Aij) max
m

(AimDim)

When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

G(K) = arg max
A

∑

ij

WijAij

s.t.
∑

j

Aij = bi,
∑

i

Aij = bj .

the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

∑

ij

WijAij ≥
∑

ij

WijA
∗
ij s.t A ∈ G

However, we demonstrate a cutting plane approach
such that the exponential enumeration is avoided
and the most violated inequalities are introduced
sequentially.

Theorem 1. The objective function maxK"0 tr(KA)
subject to tr(K) ≤ 1 recovers a low rank version of
spectral embedding.

Proof. Let K = UΛUT and A = V Λ̃V T and insert
into the objective function:

max
K"0

tr(KA) = max
Λ∈L,U∈O

tr(UΛUT V Λ̃V T )

= max
Λ∈L,U∈O

tr((V T U)Λ(V T U)T Λ̃)

= max
Λ∈L,R∈O

tr(RΛRT Λ̃)

= max
λ≥0,λT 1≤1

λT λ̃

= λ̃1.

Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into
the top eigenvalue. The (rank 1) solution must be
K = vvT where v is the leading eigenvector of A.
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Theorem 1. The objective function maxK!0 tr(KA)
subject to tr(K) ≤ 1 recovers a low-rank version of
spectral embedding.

Proof. Let K = UΛUT and A = V Λ̃V T and insert
into the objective function:

max
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Λ∈L,U∈O
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tr((V T U)Λ(V T U)T Λ̃)

= max
Λ∈L,R∈O

tr(RΛRT Λ̃)

= max
λ≥0,λT 1≤1

λT λ̃

= λ̃1.

Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into
the top eigenvalue. The (rank 1) solution must be
K = vvT where v is the leading eigenvector of A.

2 Proof2 - tighten up

Theorem 2. The error ε defined as the squared Frobe-
nius norm of the difference between the true embedding
K∗ and the recovered structure-preserving-embedding
K̂ is bounded as follows

ε = ‖K̂ −K∗‖2 ≤ 1 + tr(K̂K̂)− 2 min
K∈κ

tr(K̂K).

Proof. We begin by expanding the squared Frobenius
norm as follows:

ε = tr(K̂K̂)− 2tr(K̂K∗) + tr(K∗K∗)
= tr(K̂K̂)− 2tr(K̂K∗) + tr(V ∗Λ∗(V ∗)T V ∗Λ∗(V ∗)T )
= tr(K̂K̂)− 2tr(K̂K∗) + tr(V ∗(Λ∗)2(V ∗)T )

= tr(K̂K̂)− 2tr(K̂K∗) +
∑

i

(λ∗i )
2.

Incorporating
∑

i λ∗i = 1 produces the bound:

ε ≤ tr(K̂K̂)− 2tr(K̂K∗) + 1
≤ 1 + tr(K̂K̂)− 2 min

K∈κ
tr(K̂K).

In the last line a further upper bound is obtain by re-
covering any embedding which still satisfies F(K) = G
and reconstructs the same graph as K∗. Recall that
F(K) = G produces the convex hull of constraints
K ∈ κ which includes all linear inequalities, positive
semidefiniteness and the unit trace constraint. Since
this (negated) minimization is over a superset of ma-
trices which includes K∗, we have an upper bound.
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In the last line a further upper bound is obtain by re-
covering any embedding which still satisfies F(K) = G
and reconstructs the same graph as K∗. Recall that
F(K) = G produces the convex hull of constraints
K ∈ κ which includes all linear inequalities, positive
semidefiniteness and the unit trace constraint. Since
this (negated) minimization is over a superset of ma-
trices which includes K∗, we have an upper bound.

Table 1: Structure Preserving Embedding algorithm
for k-nearest neighbor constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameter C.

Step 1 Solve SDP K̃ = arg maxK∈K tr(KA)− Cξ
s.t. Dij > (1−Aij) maxm(AimDim)− ξ

Step 2 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

Table 2: Structure Preserving Embedding algorithm
with cutting-plane constraints.

Input A ∈ BN×N , connectivity algorithm G,
and parameters C, ε.

Step 1 Solve SDP
K̃ = arg maxK∈K tr(KA)− Cξ.

Step 2 Use G, K̃ to find biggest violator
Ã = arg maxA tr(W̃A).

Step 3 If |tr(W̃Ã)− tr(W̃A)| > ε, add constraint
tr(WA)− tr(WÃ) ≥ &(Ã,A)− ξ and go
to Step 1

Step 4 Apply SVD to K̃ and use the top
eigenvectors as embedding coordinates

Structure Preserving Embedding

Table 3. Average classification accuracy of a 1-nearest neighbor classifier on UCI datasets. MVE+SP has higher accuracy
than other low-dimensional methods and also beats All-dimensions on Ionosphere, Ecoli, and OptDigits. Other class pairs
for OptDigits are not shown since all methods achieved near 100% accuracy.

KPCA MVU MVE MVE+SP All-Dimensions
Ionosphere 66.0% 85.0% 81.2% 87.1% 78.8%
Cars 66.1% 70.1% 71.6% 78.1% 79.3%
Dermatology 58.8% 63.6% 64.8% 66.3% 76.3%
Ecoli 94.9% 95.6% 94.8% 96.0% 95.6%
Wine 68.0% 68.5% 68.3% 69.7% 71.5%
OptDigits 4 vs. 9 94.4% 99.2% 99.6% 99.8% 98.6%

ality d is reduced (for instance using the approach of
MVE+SP), the finite-sample risk should more quickly
approach the infinite sample risk. This makes it is pos-
sible to more accurately use training performance on
low-dimensional k-nearest neighbor graphs to estimate
test performance.

7. Conclusion

This article suggests that preserving local distances or
using spectral methods is insufficient for faithfully em-
bedding graphs in low-dimensional space, and demon-
strates the improvements of SPE over current graph
embedding algorithms in terms of both the quality of
the resulting visualizations as well as the amount of
information compression. SPE allows us to accurately
visualize many interesting network structures ranging
from classical graphs, to organic compounds, to the
link structure between websites, using relatively few
dimensions. Furthermore, by incorporating structure
preserving constraints into existing nonlinear dimen-
sionality reduction algorithms, these methods can ex-
plicitly preserve graph topology in addition to local
distances, and produce more accurate low-dimensional
embeddings.
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Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D − A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
Spectral Embedding and Spring Embedding do not
explicitly preserve structure according to our defini-
tion and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

We propose learning a positive semi-definite ker-
nel matrix K ∈ RN×N whose spectral decomposition
yields a small set of eigenvectors which are used as
coordinates for the nodes. These coordinates must
preserve the topology of the input graph. Specifically,
given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application
of G to K exactly reproduces the input graph:
G(K) = A. SPE is an efficient convex optimization
based on semidefinite programming for finding an
embedding K such that K is both low-rank and
structure preserving.

The goal of SPE is to find a low-dimensional

structure preserving embedding of an input graph in
Euclidean space. The embedding can be represented
as a positive semi-definite kernel matrix K ∈ RN×N

which specifies all pairwise affinities between nodes,
and by means of applying Kernel Principal Compo-
nent Analysis (KPCA) to K, specifies a unique set of
coordinates for each node !yi ∈ Rd for i = 1, . . . , N .
Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input an embedding and re-
turns an adjacency matrix, an embedding is structure
preserving if when the embedding is processed by the
connectivity algorithm G, the result is exactly the
input graph: G(K) = A.

Definition 1. Define the distance between a pair of
points (i, j) with respect to a given positive semidefinite
kernel matrix K, as Dij = Kii + Kjj − 2Kij.

When the connectivity algorithm G(K) is a greedy al-
gorithm such as k-nearest neighbors, we specify linear
constraints on K that require for each node the dis-
tances to all other nodes to which it is not connected
must be larger than the distance to the furthest con-
nected neighbor of that node:

Dij > (1−Aij) max
m

(AimDim)

Definition 2. Given a kernel matrix K, define the
weight between two points (i, j) as the negated pairwise
distance between them: Wij = −Dij = −Kii −Kjj +
2Kij.

When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

G(K) = arg max
Ã

∑

ij

WijÃij

s.t.
∑

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ {0, 1}

the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

∑

ij

WijAij ≥
∑

ij

WijÃij s.t Ã ∈ G

However, we demonstrate a cutting plane approach
such that the exponential enumeration is avoided
and the most violated inequalities are introduced
sequentially.

Structure preserving constraints can also benefit
dimensionality reduction algorithms. These methods
similarly find compact coordinates that preserve
certain properties of the input data. Many of these
manifold learning techniques preserve local distances
but not graph topology. We show that adding explicit
topological constraints to these existing algorithms is
crucial for preventing folding and collapsing problems
that occur in dimensionality reduction.

Theorem 1. The objective function maxK!0 tr(KA)
subject to tr(K) ≤ 1 recovers a low-rank version of
spectral embedding.

Proof. Let K = UΛUT and A = V Λ̃V T and insert
into the objective function:

max
K!0

tr(KA) = max
Λ∈L,U∈O

tr(UΛUT V Λ̃V T )

= max
Λ∈L,U∈O

tr((V T U)Λ(V T U)T Λ̃)

= max
Λ∈L,R∈O

tr(RΛRT Λ̃)

= max
λ≥0,λT 1≤1

λT λ̃

= λ̃1.

Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into
the top eigenvalue. The (rank 1) solution must be
K = vvT where v is the leading eigenvector of A.

2 Proof2 - tighten up

Theorem 2. The error ε defined as the squared Frobe-
nius norm of the difference between the true embedding
K∗ and the recovered structure-preserving-embedding
K̂ is bounded as follows

ε = ‖K̂ −K∗‖2 ≤ 1 + tr(K̂K̂)− 2 min
K∈κ

tr(K̂K).

Proof. We begin by expanding the squared Frobenius
norm as follows:

ε = tr(K̂K̂)− 2tr(K̂K∗) + tr(K∗K∗)
= tr(K̂K̂)− 2tr(K̂K∗) + tr(V ∗Λ∗(V ∗)T V ∗Λ∗(V ∗)T )
= tr(K̂K̂)− 2tr(K̂K∗) + tr(V ∗(Λ∗)2(V ∗)T )

= tr(K̂K̂)− 2tr(K̂K∗) +
∑

i

(λ∗i )
2.

Incorporating
∑

i λ∗i = 1 produces the bound:

ε ≤ tr(K̂K̂)− 2tr(K̂K∗) + 1
≤ 1 + tr(K̂K̂)− 2 min

K∈κ
tr(K̂K).

In the last line a further upper bound is obtain by re-
covering any embedding which still satisfies F(K) = G
and reconstructs the same graph as K∗. Recall that
F(K) = G produces the convex hull of constraints
K ∈ κ which includes all linear inequalities, positive
semidefiniteness and the unit trace constraint. Since
this (negated) minimization is over a superset of ma-
trices which includes K∗, we have an upper bound.
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Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D − A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
spectral embedding and spring embedding do not ex-
plicitly preserve structure according to our definition
and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

We propose learning a positive semi-definite ker-
nel matrix K ∈ RN×N whose spectral decomposition
yields a small set of eigenvectors which are used as
coordinates for the nodes. These coordinates must
preserve the topology of the input graph. Specifically,
given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application
of G to K exactly reproduces the input graph:
G(K) = A. SPE is an efficient convex optimization
based on semidefinite programming for finding an
embedding K such that K is both low-rank and
structure preserving.

The goal of SPE is to find a low-dimensional

structure preserving embedding of an input graph in
Euclidean space. The embedding can be represented
as a positive semi-definite kernel matrix K ∈ RN×N

which specifies all pairwise affinities between nodes,
and by means of applying Kernel Principal Compo-
nent Analysis (KPCA) to K, specifies a unique set of
coordinates for each node !yi ∈ Rd for i = 1, . . . , N .
Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input an embedding and re-
turns an adjacency matrix, an embedding is structure
preserving if when the embedding is processed by the
connectivity algorithm G, the result is exactly the
input graph: G(K) = A.
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Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
spectral embedding and spring embedding do not ex-
plicitly preserve structure according to our definition
and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

SPE is an efficient convex optimization based on
semidefinite programming for finding an embedding
K ∈ RN×N such that K is both low-rank and
structure preserving.

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application of
G to K exactly reproduces the input graph: G(K) = A.

The goal of SPE is to find a low-dimensional
structure preserving embedding of an input graph in
Euclidean space. The embedding can be represented
as a positive semi-definite kernel matrix K ∈ RN×N

which specifies all pairwise affinities between nodes,

and by means of applying Kernel Principal Compo-
nent Analysis (KPCA) to K, specifies a unique set of
coordinates for each node !yi ∈ Rd for i = 1, . . . , N .
Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input an embedding and re-
turns an adjacency matrix, an embedding is structure
preserving if when the embedding is processed by the
connectivity algorithm G, the result is exactly the
input graph: G(K) = A.
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Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D − A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
spectral embedding and spring embedding do not ex-
plicitly preserve structure according to our definition
and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

SPE is an efficient convex optimization based on
semidefinite programming for finding an embedding
K ∈ RN×N such that K is both low-rank and
structure preserving.

Using the eigenvectors of K with the largest
eigenvalues as coordinates for the nodes, we get a
low-dimensional embedding.

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application of
G to K exactly reproduces the input graph: G(K) = A.

The goal of SPE is to find a low-dimensional

structure preserving embedding of an input graph in
Euclidean space. The embedding can be represented
as a positive semi-definite kernel matrix K ∈ RN×N

which specifies all pairwise affinities between nodes,
and by means of applying Kernel Principal Compo-
nent Analysis (KPCA) to K, specifies a unique set of
coordinates for each node !yi ∈ Rd for i = 1, . . . , N .
Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input an embedding and re-
turns an adjacency matrix, an embedding is structure
preserving if when the embedding is processed by the
connectivity algorithm G, the result is exactly the
input graph: G(K) = A.

A K
SDP SVD

!yi

Dij = Kii + Kjj − 2Kij

Dij > (1−Aij) maxm(AimDim)

Dij(Aij − 1
2 ) ≤ ε(Aij − 1

2 )

Wij = −Kii −Kjj + 2Kij

Constraints are 
linear in    K

         → k-nearest neighbors:G(K)

           → epsilon-balls:G(K)

           → maximum weight subgraphs:G(K)

Structure Preserving Embedding

Blake Shaw
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

1 Text for Poster

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D − A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
spectral embedding and spring embedding do not ex-
plicitly preserve structure according to our definition
and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

SPE is an efficient convex optimization based on
semidefinite programming for finding an embedding
K ∈ RN×N such that K is both low-rank and
structure preserving.

Using the eigenvectors of K with the largest
eigenvalues as coordinates for the nodes, we get a
low-dimensional embedding.

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application of
G to K exactly reproduces the input graph: G(K) = A.

Linear constraints on K enforce that K preserves the
topology of the input adjacency matrix

Define distance and weight in terms of K:

Dij = Kii + Kjj − 2Kij

Wij = −Dij = −Kii −Kjj + 2Kij

k-nearest neighbors for each node the distances to
all other nodes to which it is not connected must
be larger than the distance to the furthest connected
neighbor of that node:

Dij > (1−Aij) max
m

(AimDim)

ε-balls blah blah

Dij(Aij −
1
2
) ≤ ε(Aij −

1
2
)

maximum weight subgraph method blah blah
When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

G(K) = arg max
Ã

∑

ij

WijÃij

s.t.
∑

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ {0, 1}

the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

∑

ij

WijAij ≥
∑

ij

WijÃij s.t Ã ∈ G

b-matching:
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1 Text for Poster

Spectral embedding - decompose adjacency matrix
A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.
Laplacian Eigenmaps (Belkin, Niyogi ’02) - form
graph laplacian from adjacency matrix, L = D − A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.
Spring embedding - simulate physical system where
edges are springs, use Hookes law to compute forces.

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?

Traditional graph embedding algorithms such as
spectral embedding and spring embedding do not ex-
plicitly preserve structure according to our definition
and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the
Mobius ladder:

SPE is an efficient convex optimization based on
semidefinite programming for finding an embedding
K ∈ RN×N such that K is both low-rank and
structure preserving.

Using the eigenvectors of K with the largest
eigenvalues as coordinates for the nodes, we get a
low-dimensional embedding.

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application of
G to K exactly reproduces the input graph: G(K) = A.

Linear constraints on K enforce that K preserves the
topology of the input adjacency matrix

Define distance and weight in terms of K:

Dij = Kii + Kjj − 2Kij

Wij = −Dij = −Kii −Kjj + 2Kij

G(K) = arg max
Ã

∑

ij

WijÃij s.t. Ã ∈ T

k-nearest neighbors

Dij > (1−Aij) max
m

(AimDim)

ε-balls blah blah

Dij(Aij −
1
2
) ≤ ε(Aij −

1
2
)

maximum weight subgraph method blah blah
When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

G(K) = arg max
Ã

∑

ij

WijÃij

s.t.
∑

j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ {0, 1}

the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

∑

ij

WijAij ≥
∑

ij

WijÃij s.t Ã ∈ G

max-weight spanning tree:

∑

ij

WijAij ≥
∑

ij

WijÃij s.t Ã ∈ G

exponential number of constraints of form:

avoid enumeration w/ cutting-plane algorithm


