Structure

Graph Embedding from
Connedctivity information

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?
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Output: coordinates
for each node

Input: binary
adjacency matrix

AcBNXN ¢ eRYfori=1,...,N

Spectral embedding - decompose adjacency matrix

A with an SVD and use eigenvectors with highest
eigenvalues for coordinates.

Laplacian Eigenmaps (Belkin, Niyogi ’02) - form

graph laplacian from adjacency matrix, L = D — A,
apply SVD to L and use eigenvectors with smallest
non-zero eigenvalues for coordinates.

Spring embedding - simulate physical system where

edges are springs, use Hookes law to compute forces.

Embedding the Mobius Ladder

Traditional graph embedding algorithms such as
spectral embedding and spring embedding do not ex-
plicitly preserve structure according to our definition
and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the

Mobius ladder:

|

SPE

Mobius Band Embedding

Adjacency Matrix

"™

Spectral Embedding Two Spring Embeddings

Preserving Embedding

Blake Shaw
Tony Jebara
Columbia University

Structure Preserving Embedding

SPE is an efficient convex optimization based on
semidefinite programming for finding an embedding
K € R¥XN guch that K is both low-rank and

structure preserving.

Using the eigenvectors of K with the largest
eigenvalues as coordinates for the nodes, we get a
low-dimensional embedding.

A S K Ui

SVD
Structure Preserving Constraints

Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input a kernel K specifying an
embedding and returns an adjacency matrix, we call
an embedding structure preserving if the application of
G to K exactly reproduces the input graph: G(K) = A.

SDP

Constraints are Dz’j = K + ij — 2K
linear in i Wi = —Ky — Kjj + 2K,

G(K)— k-nearest neighbors:
Dij > (]. — Azg) maxm(Aszzm)

G(K) — epsilon-balls:

D;j(Aij — 5) < e(Aij — 3)

G(K) = maximum weight subgraphs:

b-matching:

G(K) = arg mgxizj Wijfiij

S.1. ZAZ] m— bi, Aij — Ajfi; Azz — 07 Aij < {07 1}

J
max-weight spanning tree:
G(K) = arg m@xz WijAijst. AeT
A i

exponential number of constraints of form:
E Wz’inj > E Wz’inj stAeg
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avoid enumeration w/ cutting-plane algorithm

Low-rank Objective

Theorem 1. The objective function max o tr(K A)
subject to tr(K) < 1 recovers a low-rank version of
spectral embedding.

Proof. Let K = UAUT and A = VAVT and insert

into the objective function:

maxtr(KA) = max tr(UAUTVAVT)
K>0 Ael,UeO

_ T T7\T X
= Aerlrzl%xeotr((‘/ U)A(V-U)" A)

=  max tr(RARTA)
AEL,REO

— max A\
A>00T1<1

= A

Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into
the top eigenvalue. The (rank 1) solution must be
K = vv! where v is the leading eigenvector of A. O

Algorithm Overview

Table 1: Structure Preserving Embedding algorithm
for k-nearest neighbor constraints.

Input | A € BY*V, connectivity algorithm G,
and parameter C.

Step 1 | Solve SDP K = arg maxgci tr(KA) — C¢
S.T. Dij > (1 — A’&J) maxm(AimDim) — f

Step 2 | Apply SVD to K and use the top
eigenvectors as embedding coordinates

Table 2: Structure Preserving Embedding algorithm
with cutting-plane constraints.

Input | A € BY*Y, connectivity algorithm G,
and parameters C, €.

Step 1 | Solve SDP
K = argmaxgcx tr(KA) — CE.

Step 2 | Use G, K to find biggest violator
A = argmax 4 tr(WA).

Step 3 | If [tr(WA) — tr(WA)| > ¢, add constraint
tr(WA) — tr(WA) > A(A, A) — € and go
to Step 1

Step 4 | Apply SVD to K and use the top
eigenvectors as embedding coordinates
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Dimensionality Reduction

Structure preserving constraints can also benefit
dimensionality reduction algorithms. These methods
similarly find compact coordinates that preserve
certain properties of the input data. Many of these
manifold learning techniques preserve local distances
but not graph topology. We show that adding explicit
topological constraints to these existing algorithms is

crucial for preventing folding and collapsing problems

that occur in dimensionality reduction.
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MVE+SP for UCI datasets

1-nearest neighbor classifer accuracy on 2D embeddings

KPCA MVU MVE MVE+SP | All-Dimensions
Ionosphere 66.0% 85.0% 81.2% 87.1% 78.8%
Cars 66.1% 70.1% 71.6% 78.1% 79.3%
Dermatology 58.8% 63.6% 64.8% 66.3% 76.3%
Ecoli 94.9%  95.6% 94.8% 96.0% 95.6%
Wine 68.0% 68.5% 68.3% 69.7% 71.5%
OptDigits 4 vs. 9  94.4%  99.2%  99.6% 99.8% 98.6%




