Graph Embedding with Structure

Preserving

Constraints

Graph Embedding from
Connectivity information

Given only connectivity information describing which
nodes in a graph are connected, can we learn a set of
low-dimensional coordinates for each node such that
these coordinates can easily be used to reconstruct
the original structure of the network?
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Embedding the Mobius Ladder

Traditional graph embedding algorithms such as
Spectral Embedding and Spring Embedding do not
explicitly preserve structure according to our defini-
tion and thus in practice perform poorly in accurately
visualizing many simple classical graphs such as the

Mobius ladder:
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Structure Preserving Embedding

The goal of SPE is to find a low-dimensional
structure preserving embedding of an input graph in
Euclidean space. The embedding can be represented
as a positive semi-definite kernel matrix K € RV
which specifies all pairwise affinities between nodes,
and by means of applying Kernel Principal Compo-
nent Analysis (KPCA) to K, specifies a unique set of
coordinates for each node y; € R? for ¢ = 1,...,N.
Given a connectivity algorithm G (such as k-nearest
neighbors, b-matching, or maximum weight spanning
tree) which accepts as input an embedding and re-
turns an adjacency matrix, an embedding is structure
preserving if when the embedding is processed by the
connectivity algorithm G, the result is exactly the
input graph: G(K) = Ax = A.

Structure Preserving Constraints

When the connectivity algorithm G(K) is a greedy
algorithm such as k-nearest neighbors, we require that
for each node that the distances to all other nodes
to which it is not connected must be larger than the
distance to the furthest connected neighbor of that
node:

Dz'j > (1 — Aij) IIl&X(Aisz'm)

When the connectivity algorithm G(K) is a maximum
weight subgraph method such as b-matching:

Q(K) — argrrrilxz Wiinj
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S.t. ZAij = b;, ZAij = bj.
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the constraints on K to make it structure preserving
cannot be enumerated with a small finite set of lin-
ear inequalities; in fact, there can be an exponential
number of these constraints:

Z Wz'inj > ZW"«JA:j stAeg

However, we demonstrate a cutting plane approach
such that the exponential enumeration is avoided and
the most violated inequalities are introduced sequen-
tially.

Low-rank embeddings

Theorem 1. The objective function maxgsq tr(KA)
subject to tr(K) < 1 recovers a low rank version of
spectral embedding.

Proof. Let K = UAU? and A = VAVT and insert

into the objective function:

maxtr(KA) = max tr(UAUTVAVT)
K>0 A€LUEO
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Thus, the maximization problem reproduces spectral
embedding while pushing all the spectrum weight into
the top eigenvalue. The (rank 1) solution must be
K = vv! where v is the leading eigenvector of A. [

Bounding Embedding Error

Theorem 2. The error € defined as the squared Frobe-
nius norm of the difference between the true embedding

K™ and the recovered structure-preserving-embedding
K is bounded as follows

e = ||[K—-K*|]? < l—I—tr(KK)—Zr?mtr(KK)
€K

Proof. We begin by expanding the squared Frobenius
norm as follows:

e = tr(KK)—2tr(KK*) +tr(K*K")
tr(KK) — 2tr(KK*) + tr(V*A* (V)T V*A*(V)T)
= tr(KK) — 2tr(KK*) 4+ tr(V*(A*)?(V*)T)
tr(KK) — 2tr(KK*) + Z A¥)?

Incorporating ) . Af =1 produces the bound:

e < tr(KK)—2tr(KK*)+1
< 1+tr(KK) —2mintr(KK).
Ker
In the last line a further upper bound is obtain by re-
covering any embedding which still satisfies F(K) = G
and reconstructs the same graph as K*. Recall that
F(K) = G produces the convex hull of constraints
K € k which includes all linear inequalities, positive
semidefiniteness and the unit trace constraint. Since
this (negated) minimization is over a superset of ma-
trices which includes K*, we have an upper bound. [
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